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1. INTRODUCTION 

 
The Clean Air Act, which was last amended in 1990, requires EPA to set National 

Ambient Air Quality Standards (NAAQS) for widespread pollutants from numerous and diverse 
sources considered harmful to public health and the environment.  EPA has set NAAQS for the 
following pollutants, which are called “criteria” pollutants: ozone, particulate matter, carbon 
monoxide, sulfur dioxide, nitrogen oxides, and lead.  The Clean Air Act requires periodic review 
of the science upon which the standards are based and the standards themselves to (1) ensure that 
they provide adequate health and environmental protection and (2) update those standards as 
necessary. 

Under the NAAQS review process, EPA's Office of Research and Development (ORD) 
develops an “air quality criteria document” – a compilation and evaluation by EPA scientific 
staff and other expert authors of the latest scientific knowledge useful in assessing the health and 
welfare effects of the air pollutant.  In August 2005, the second external review draft of the Air 
Quality Criteria for Ozone and Related Photochemical Oxidants (Ozone Criteria Document, 
EPA, 2005a) was released for public comment and review by EPA's Clean Air Scientific 
Advisory Committee (CASAC).  The Ozone Criteria Document presents the latest available 
pertinent information on atmospheric science, air quality, exposure, dosimetry, health effects, 
and environmental effects of ozone and other related photochemical oxidants. 

This report documents the methodology and input data used in the inhalation exposure 
assessment for ozone conducted in support of the current review of the ozone NAAQS.  
Specifically, this report includes the following: 

• Summary of the overall inhalation exposure assessment methodology; 

• Description of the inhalation exposure model used in this assessment; 

• Description of the input data used for the 12 selected urban areas; and 

• Assessment of the quality and limitations of the input data for supporting the goals of 
the ozone NAAQS exposure analysis. 

1.1 Selection of Urban Areas 

The selection of urban areas to include in the exposure analysis takes into consideration 
the location of ozone field and epidemiology studies, the availability of ambient monitoring data 
for ozone, and the desire to represent a range of geographic areas, population demographics, and 
ozone climatology.  These selection criteria are discussed further in the draft Ozone Staff Paper 
(EPA, 2005b).   Based on these criteria, EPA has selected the following 12 urban areas for 
inclusion in the exposure analysis: 

• Atlanta, GA; 
• Boston, MA; 
• Chicago, IL; 
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• Cleveland, OH; 
• Detroit, MI; 
• Houston, TX; 
• Los Angeles, CA; 
• New York, NY; 
• Philadelphia, PA; 
• Sacramento, CA; 
• St. Louis, MO; and 
• Washington, D.C. 

1.2 Exposure Periods 

The exposure periods modeled were April 1 through September 30 for the most recent 
year for which data are available, 2004. 

1.3 Populations Analyzed 

Exposure modeling was conducted for the general population residing in each area 
modeled, as well as for school-age children (ages 5 to 18), active school-age children, and 
asthmatic school-age children.  Due to the increased amount of time spent outdoors engaged in 
relatively high levels of physical activity, school-age children as a group are particularly at risk 
for experiencing ozone-related health effects due to their increased dose rates. 

 

2. DESCRIPTION OF THE APEX MODEL 

The Air Pollutants Exposure model (APEX) is a personal computer (PC)-based program 
designed to estimate human exposure to criteria and air toxic pollutants at the local, urban, and 
consolidated metropolitan levels.  APEX, also known as TRIM.Expo, is the human inhalation 
exposure module of EPA’s Total Risk Integrated Methodology (TRIM) model framework (EPA, 
1999), a modeling system with multimedia capabilities for assessing human health and 
ecological risks from hazardous and criteria air pollutants.  It is being developed to support 
evaluations with a scientifically sound, flexible, and user-friendly methodology.  Additional 
information on the TRIM modeling system, as well as downloads of the APEX Model, user’s 
guide, and other supporting documentation, can be found on EPA’s Technology Transfer 
Network (TTN) at http://www.epa.gov/ttn/fera. 
 
2.1 History of APEX 

APEX was derived from the National Ambient Air Quality Standards (NAAQS) 
Exposure Model (NEM) series of models.  The NEM series was developed to estimate exposure 
to the criteria pollutants (e.g., CO, ozone).  In 1979, EPA began to develop NEM by assembling 
a database of human activity patterns that could be used to estimate exposures to indoor and 
outdoor pollutants (Roddin et al., 1979).  The data were then combined with measured outdoor 
concentrations in NEM to estimate exposures to CO (Biller et al., 1981; Johnson and Paul, 
1983).  In 1988, OAQPS began to incorporate probabilistic elements into the NEM methodology 
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and use activity pattern data based on various human activity diary studies to create an early 
version of probabilistic NEM for ozone (i.e., pNEM/O3).  In 1991, a probabilistic version of 
NEM was developed for CO (pNEM/CO) that included a one-compartment mass-balance model 
to estimate CO concentrations in indoor microenvironments.  The application of this model to 
Denver, Colorado has been documented in Johnson et al. (1992).  Several newer versions of 
pNEM/O3 were developed in the early- to mid-1990’s, including versions developed for 
applications to nine urban areas for the general population, outdoor children, and outdoor 
workers (Johnson et al., 1996a,b,c).  Between 1999 and 2001, updated versions of pNEM/CO 
(versions 2.0 and 2.1) were developed that rely on activity diary data from EPA’s Consolidated 
Human Activities Database (CHAD) and enhanced algorithms for simulating gas stove usage, 
estimating alveolar ventilation rate (a measure of human respiration), and modeling home-to-
work commuting patterns.   

The first version of APEX was essentially identical to pNEM/CO (version 2.0) except 
that it ran on a PC instead of a mainframe.  The next version, APEX2, was substantially 
different, particularly in the use of a personal profile approach rather than a cohort simulation 
approach.  APEX3 introduced a number of new features including automatic site selection from 
national databases, a series of new output tables providing summary exposure and dose statistics, 
and a thoroughly reorganized method of describing microenvironments and their parameters.  
Most of the spatial and temporal constraints of pNEM and APEX1 were removed or relaxed by 
version 3. 

The version of APEX used in this modeling analysis is APEX 4, described in the APEX 
User’s Guide (EPA, 2005c). 

2.2 Theoretical Basis and Limitations of APEX 

APEX estimates human exposure to criteria and toxic air pollutants at the local, urban, or 
consolidated metropolitan area levels using a stochastic, “microenvironmental” approach.  The 
model randomly selects data for a sample of hypothetical individuals from an actual population 
database and simulates each hypothetical individual’s movements through time and space (e.g., 
at home, in vehicles) to estimate their exposure to the subject pollutant.  APEX models 
commuting and thus exposures at both home and work locations for individuals who work in 
different areas than they live. 

APEX can be thought of as a simulated field study that would involve selecting an actual 
sample of specific individuals who live in (or work and live in) a geographic area and then 
continuously monitoring their activities and subsequent inhalation exposure to a specific air 
pollutant during a specific period of time.  

The main differences between APEX and an actual field study are that in APEX: 

• The sample of individuals is a “virtual” sample, created by the model according to 
various demographic variables and census data of relative frequencies, in order to obtain 
a representative sample (to the extent possible) of the actual people in the study area; 
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• The activity patterns of the sampled individuals (e.g., the specification of indoor and 
other microenvironments, the duration of time spent in each) are assumed by the model to 
be comparable to individuals with similar demographic characteristics, according to 
activity data such as diaries compiled in EPA’s CHAD (EPA, 2002; McCurdy et al., 
2000); 

• The pollutant exposure concentrations are estimated by the model using a set of user-
input ambient outdoor concentrations and information on the behavior of the pollutant in 
various microenvironments;  

• Various reductions in ambient air quality levels can be simulated by either adjusting air 
quality concentrations to attain alternative ambient standards under consideration or by 
reducing source emissions and obtaining resulting air quality modeling outputs that 
reflect these potential emission reductions, and 

• The model attempts to account for the most significant factors contributing to inhalation 
exposure – the temporal and spatial distribution of people and pollutant concentrations 
throughout the study area and among the microenvironments – while also allowing the 
flexibility to adjust some of these factors for regulatory assessment and other reasons. 

All models have limitations that require the use of assumptions.  Limitations of APEX lie 
primarily in the uncertainties associated with predicted distributions (e.g., human activity 
patterns).  Uncertainties and assumptions associated with these distributions include the 
following: 

• The population activity pattern data supplied with APEX (i.e., CHAD activity data) are 
compiled from a number of studies in different areas, and for different seasons and years.  
Therefore, the combined data set may not constitute a representative sample.  
Nevertheless, the largest portion of CHAD (about 40 percent) is from a study of national 
scope (which could be extracted by the user if desired to create a representative sample). 

• Commuting pattern data were derived from the 2000 U.S. Census.  The commuting data 
address only home-to-work travel.  The population not employed outside the home is 
assumed to always remain in the residential census tract.  Furthermore, although several 
of the APEX microenvironments account for time spent in travel, the travel is assumed to 
always occur in basically a composite of the home and work tract.  No other provision is 
made for the possibility of passing through other tracts during travel. 

• APEX creates seasonal or annual sequences for a simulated individual by sampling 
human activity data from more than one subject.  Each simulated person essentially 
becomes a composite of several actual people in the underlying activity data. 

• The model currently does not capture certain correlations among human activities that 
can impact microenvironmental concentrations (e.g., cigarette smoking leading to an 
individual opening a window, which in turn affects the amount of outdoor air penetrating 
the residence). 
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• Certain aspects of the personal profiles are held constant, though in reality they change 
yearly (e.g., age).  This is generally only an issue for simulations with long timeframes. 

2.3 Overview of Model  

APEX is designed to simulate population exposure to criteria and air toxic pollutants at 
local, urban, and regional scales.  The user specifies the geographic area to be modeled and the 
number of individuals to be simulated to represent this population.  APEX then generates a 
personal profile for each simulated person that specifies various parameter values required by the 
model.  The model next uses diary-derived time/activity data matched to each personal profile to 
generate an exposure event sequence (also referred to as “activity pattern” or “composite diary”) 
for the modeled individual that spans a specified time period, such as one year.  Each event in the 
sequence specifies a start time, exposure duration, geographic location, microenvironment, and 
activity.  Probabilistic algorithms are used to estimate the pollutant concentration and ventilation 
(respiration) rate associated with each exposure event.  The estimated pollutant concentrations 
account for the effects of ambient (outdoor) pollutant concentration, penetration factors, air 
exchange rates, decay/deposition rates, and proximity to emission sources, depending on the 
microenvironment, available data, and estimation method selected by the user.  The ventilation 
rate is derived from an energy expenditure rate estimated for the specified activity.  Because the 
modeled individuals represent a random sample of the population of interest, the distribution of 
modeled individual exposures can be extrapolated to the larger population.  The model 
simulation includes up to six steps, each of which is described in the sections indicated below: 

1. Characterize the study area.  APEX selects tracts (e.g., census tracts) within a study 
area – and thus identifies the potentially exposed population – based on the user-defined 
center and radius of the study area and availability of air quality and meteorological data 
for the area.  (Section 2.3.1) 

2. Generate simulated individuals.  APEX stochastically generates a sample of 
hypothetical individuals based on the census data for the study area and human profile 
distribution data (such as age-specific employment probabilities).  The user must specify 
the size of the sample.  The larger the sample, the more representative it is of the 
population in the study area (but also the longer the computing time).  (Section 2.3.2) 

3. Construct a sequence of activity events.  APEX constructs an exposure event sequence 
(activity pattern) spanning the period of the simulation for each of the hypothetical 
individuals (based on the supplied CHAD data, although other data could be used).  
(Section 2.3.3) 

4. Calculate hourly concentrations in microenvironments.  APEX users must define 
microenvironments that people in the study area would visit by mapping location codes 
in the supplied CHAD database to the user-specified microenvironments.  The model 
then calculates hourly concentrations of a pollutant in each of these microenvironments 
for the period of simulation, based on the user-provided microenvironment descriptions 
and hourly ambient air quality data.  All the hourly concentrations in the 
microenvironments are re-calculated for each of simulated individuals.  (Section 2.4) 
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5. Determine exposures.  APEX assigns a concentration to each exposure event based on 
the microenvironment occupied during the event and the person’s activity.  These values 
are averaged by clock hour to produce a sequence of hourly average exposures spanning 
the specified exposure period (typically one year).  These hourly values may be further 
aggregated to produce daily, monthly, and annual average exposure values.  (Section 2.5) 

 The model simulation continues until exposures are determined for entire modeling 
period for the user-specified number of simulated individuals.  Figure 2-1 presents these steps 
within a schematic of the APEX model design.  Subsections that follow provide addition detail 
on the key algorithms used in Steps 1 through 5. 
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Figure 2-1.  Overview of the APEX Model
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Figure 2-1.  Overview of the APEX Model, continued
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Figure 2-1.  Overview of the APEX Model, concluded
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2.3.1 Characterize the Study Area 

The APEX study area has traditionally been on the scale of a city or slightly larger 
metropolitan area, although it is now possible to model larger areas such as consolidated 
metropolitan statistical areas (CMSAs).  Even larger study areas are possible, depending 
primarily on computing capabilities, available data, and the desired precision of the run. 

In this analysis the study area is defined by a list of counties.  The demographic data used 
by the model to create personal profiles is provided at the tract level.  For each tract the model 
requires demographic information representing the distribution of age, gender, race, and work 
status within the study population.  Each tract has a location specified by latitude and longitude 
for some representative point (e.g., geographic center).  The current release of APEX includes 
input files that already contain this demographic and location data for all census tracts in the 50 
United States, based on the 2000 Census. 

The ambient air quality data are assigned to geographic areas called districts.  The 
districts are used to assign pollutant concentrations to the tracts and microenvironments being 
modeled.  The ambient air quality data are provided by the user as hourly time series for each 
district.  As with tracts, each district has a representative location (latitude and longitude).  
Districts can extend outside of the study area. 

APEX calculates the distance from each tract to each district center, and assigns the tract 
to the nearest district, provided the tract’s representative location point (e.g., geographic center) 
is in the district.  Each tract is assigned to only one district. 

Ambient temperatures are input to APEX for different sites (locations).  As with districts, 
APEX calculates the distance from each tract to each temperature site and assigns each tract to 
the nearest site. 

2.3.2 Generate Simulated Individuals 

APEX stochastically generates a user-specified number of simulated (hypothetical) 
persons to represent the population in the study area.  Each simulated person is represented by a 
“personal profile.”  APEX generates the simulated person or profile by probabilistically selecting 
values for a set of profile variables (Table 2-1).  The profile variables include: 

• Demographic variables, which are generated based on the census data; 
• Residential variables, which are generated based on sets of distribution data; 
• Physiological variables, which are generated based on age- and gender-specific 

distribution data; and 
• Daily varying variables, which are generated based on distribution data that change daily 

during the simulation period. 

APEX first selects and calculates demographic, residential, and physiological variables (except 
for daily values) for all the specified number of simulated individuals, and then determines 
exposures (and optionally doses) for each simulated person.  The following subsections describe 
these variables in more detail. 
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Table 2-1.  Profile Variables in APEX 

Variable 
Type Profile Variables Description 

Age Age (years) 

Gender Male or Female 

Race White, Black, Native American, Asian, and Other 

Home tract Tract in which a simulated person lives 

Work tract Tract in which a simulated person works 

Demographic  
variables 

Employment status Indicates employment outside home 

Residential 
variables 

Air conditioner Indicates presence of air conditioning at home 

Daily average car speed Daily average car speed In-vehicle 
variables Car air conditioner Indicates presence of air conditioning in the vehicle 

Height Height of a simulated person (in) 

Weight Body weight of a simulated person (lbs) 

Resting metabolic rate Resting metabolic activity rate (kcal/min) 

Energy conversion factor Oxygen uptake per unit of energy expanded (liters/kcal) 

Physiological 
variables 

Maximum permitted 
metabolic value 

Maximum metabolic activity level that can be sustained for about 
five minutes (dimensionless) 

 

Demographic Variables 

The values of the demographic variables for a simulated profile are selected 
probabilistically according to their joint distribution in the input population files. 

Residential Variables 

The residential variables are categorical variables that are used to indicate whether a 
residence or a car associated with a simulated person has the specified characteristic.  These are 
randomly selected based on user-specified probabilities.  For example, a user could specify 
probabilities of 0.3 for not having an air conditioner and 0.7 for having an air conditioner.  
APEX randomly generates a value in the range of 0 to 1, assuming a uniform distribution.  If this 
value is larger than 0.3, the simulated person will have an air conditioner.  If the value is less 
than 0.3, the person will not have an air conditioner.   

Physiological Profile Variables  

The physiological variables are used for calculating ventilation rates.  Input data to APEX 
provide gender- and age-specific distributions for these variables. 
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2.3.3 Construction of Activity Sequences 

 APEX probabilistically creates a composite diary for each of the simulated persons by 
selecting a 24-hour diary record – or diary day – from an activity database for each day of the 
simulation period.  CHAD data have been supplied with APEX for this purpose.  A composite 
diary is a sequence of events that simulates the movement of a modeled person through 
geographical locations and microenvironments during the simulation period.  Each event is 
defined by geographic location, start time, duration, microenvironment visited, and an activity 
performed.  The activity database input to APEX contains the following information for each 
person for each day in each person’s diary:  age, gender, race, employment status, occupation, 
day of week, daily maximum hourly average temperature, the location, start time, duration, and 
type of each activity during the day. 

APEX develops a composite diary for each of the simulated individuals according to the 
following steps: 

1. Divide diary days in the CHAD database into user-defined activity pools, based on day 
type and temperature. 

2. Assign an activity pool number to each day of the simulation period, based on the user-
provided daily maximum/average temperature data. 

3. Calculate a selection probability for each of the diary days in each of the activity pools, 
based on age/gender/employment similarity of a simulated person to a diary day. 

4. Probabilistically select a diary day from available diary days in the activity pool assigned 
to each day of the simulation period. 

5. Evaluate a metabolic value for each activity performed while in a CHAD location, based 
on the activity-specific metabolic distribution data.  This is used to calculate a ventilation 
rate for the simulated person performing the activity. 

6. Map the CHAD locations in the selected diary to the user-defined modeled 
microenvironments. 

7. Concatenate the selected diary days into a longitudinal diary for a simulated individual 
covering all days in the simulated period. 

The method in APEX for creating longitudinal diaries which reflect the tendency of 
individuals to repeat activities is based on reproducing realistic variation in a user-selected key 
diary variable.  APEX reads the values of the key variable from an external file.  Currently, files 
have been constructed for both outdoor time and vehicle time for all CHAD diaries by summing 
the total time associated with “outdoor” and “vehicle” CHAD location codes for each diary.  The 
actual diary construction method targets two statistics, D and A.  The D statistic reflects the 
relative importance of within-person variance and between-person variance in the key variable. 
The A statistic quantifies the lag-one (day-to-day) variable autocorrelation.  Desired D and A 
values for the key variable are selected by the user and set in the APEX parameters file, and the 
method algorithm constructs a longitudinal diary that preserves these parameters.  Longitudinal 
diary data from a field study in children (Geyh et al., 2000), and subsequent analyses (Xue et al., 
2004) suggest that D and A are stable over time (and perhaps over cohorts as well).  Based on 
these studies, appropriate target values for the two statistics for outdoor time are determined to 
be D=0.22 and A=0.19.  The longitudinal diary methodology is described further in Appendix C. 
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2.4 Algorithms for Calculating Microenvironmental Concentrations 

Probabilistic algorithms are used to estimate the pollutant concentration and ventilation 
(respiration) rate associated with each exposure event.  The estimated pollutant concentrations 
account for the effects of ambient (outdoor) pollutant concentration, penetration factor, air 
exchange rate, decay/deposition rate, and proximity to emission sources, depending on the 
microenvironment, available data, and the estimation method selected by the user.  Ventilation 
(as discussed in Section 2.4.1 below) is a measure of human respiration, which is activity and 
physiology dependent.  It is used in APEX to simulate human activities in order to estimate, 
more realistically, inhalation exposure and dose.  The ventilation rate is derived from an energy 
expenditure rate estimated for the specified activity. 

APEX calculates air concentrations in the various microenvironments visited by the 
simulated person by using the ambient air data for the relevant tracts and the user-specified 
method and parameters that are specific to each microenvironment.  APEX calculates hourly 
concentrations of the subject air pollutant in all the microenvironments at each hour of the 
simulation for each of the simulated individuals, based on the hourly ambient air quality data 
specific to the geographic locations visited by the individual.  APEX provides two methods for 
calculating microenvironmental concentrations: the mass balance method and the transfer factors 
method (described in Sections 2.4.2 and 2.4.3, respectively).  The user is required to specify a 
calculation method for each of the microenvironments; there are no restrictions on the method 
specified for each microenvironment (e.g., some microenvironments can use the transfer factors 
method while the others use the mass balance method). 

2.4.1 Ventilation 

 Ventilation is a general term for the movement of air into and out of the lungs.  Minute or 
total ventilation is the amount of air moved in or out of the lungs per minute.  Quantitatively, the 
amount of air breathed in per minute (VI) is slightly greater than the amount expired per minute 
(VE).  Clinically, however, this difference is not important, and by convention minute ventilation 
is always measured on an expired sample, VE.  

The oxygen ventilation rate VO2 (l of O2/min) is related to the energy expenditure rate for 
the given event activity and the given profile’s physiology in terms of oxygen ventilation per unit 
energy expenditure, or: 

ECFxEEVO =2    (2-1) 

where: 

 EE  = Energy expenditure (kcal/min) 
 ECF = Energy conversion factor (l of O2/kcal). 

ECF is based on the physiology of the individual being modeled.  EE is related to the activity-
specific energy expenditure rate and the basal or resting energy expenditure (metabolic) rate of 
the given profile, or: 
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RMRxMETEE =    (2-2) 

where: 

 METS = Metabolic equivalents of work (the ratio of the rate of energy consumption 
for non-rest activities to the resting rate of energy consumption) (dimensionless) 

 RMR = Resting metabolic rate (kcal/min). 

RMR is based on the physiology of the individual being modeled.  METS is the ratio of the 
activity-specific energy expenditure rate to the basal or resting energy expenditure rate.  While 
different people have very different basal metabolic rates, it is generally found that the metabolic 
ratios do not exhibit as much variability.  Thus, standing still might require two times the basal 
energy expenditure, or two METS, for most people, with relatively little variation.  Since the 
basal rate is constant for each profile, it only has to be determined once and the activity-specific 
metabolic ratio can be used to determine the absolute energy expenditure rate, EE, for each 
activity.    

Dividing equation 2-1 by body mass (BM) and using equation 2-2, one obtains:  

BMMETxECFxRMRBMVO //2 =     (2-3)   

Graham and McCurdy (2004) describe an approach to estimate VE directly from VO2 
using a series of regression-based equations.  Using data compiled from 32 clinical exercise 
studies collected over a 25-year period by Dr. William C. Adams of the University of California 
at Davis, they developed an algorithm for four age groups and both genders.  The algorithm 
accounts for differences in ventilation rate due to activity level, variability within age groups, 
and variation both between and within individuals.  Their model is implemented in APEX as: 

iiiiiOi ewebgenderbagebBMVbbBMVE ++++++= )*())1ln(*())/ln(*()/ln( 32210  (2-4) 

where: 

the VO2/BM term is given in terms of the APEX variables by equation 2-3,  
age is the age of the individual in years, and 
gender is a flag with value -1 for males and +1 for females. 

Random error (ε) is allocated to two variance components used to estimate the between-person 
(inter-individual variability) residuals distribution (eb) and within-person (intra-individual 
variability) residuals distribution (ew).  The regression parameters b0, b1, b2, b3, and eb are 
assumed to be constant over time for a given simulated person, whereas ew varies from event to 
event.  These parameters are randomly drawn from normal distributions with means and standard 
deviations given in Table 2-2.  eb and ew have mean zero. 
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Table 2-2.  Ventilation Regression Parameters 

Age 
range 

mean
b0 

stdev
b0 

mean
b1 

stdev
b1 

mean
b2 

stdev
b2 

mean
b3 

stdev
b3 

stdev
eb 

stdev
ew 

0-19 4.4329 0.0579 1.0864 0.0097 -0.2829 0.0124 0.0513 0.0045 0.0955 0.1117 

20-33 3.5718 0.0792 1.1702 0.0067 0.1138 0.0243 0.045 0.0031 0.1217 0.1296 

34-60 3.1876 0.1271 1.1224 0.012 0.1762 0.0335 0.0415 0.0095 0.126 0.1152 

>60 2.4487 0.3646 1.0437 0.0195 0.2681 0.0834 -0.0298 0.01 0.1064 0.0676 

 

2.4.2 Excess Post-Exercise Oxygen Consumption 

APEX has an algorithm for adjusting the METS values to account for excess post-
exercise oxygen consumption (EPOC).  This algorithm is described in Appendix B.  

2.4.3 Mass Balance Model 

The mass balance method models an enclosed microenvironment as a well-mixed volume 
in which the air concentration is spatially uniform at any specific time.  The concentration of an 
air pollutant in such a microenvironment is estimated using the following four processes: 

• Inflow of air into the microenvironment; 
• Outflow of air from the microenvironment; 
• Removal of a pollutant from the microenvironment due to deposition, filtration, and 

chemical degradation; and  
• Emissions from sources of a pollutant inside the microenvironment. 

Table 2-3 lists the parameters required by the mass balance method to calculate concentrations in 
a microenvironment.  The proximity factor (fproximity) is used to account for differences in 
ambient concentrations between the geographic location represented by the ambient air quality 
data (e.g., a regional fixed-site monitor) and the geographic location of the microenvironment 
(e.g., near a roadway).  This factor could take a value either greater than or less than 1.  
Emission source (ES) represents the emission rate for the emission source and concentration 
source (CS) is the mean air concentration resulting from the source.  Rremoval is defined as the 
removal rate of a pollutant from a microenvironment due to deposition, filtration, and chemical 
reaction.  The air exchange rate (Rair exchange) is expressed in air changes per hour.  This analysis 
of ozone exposures does not consider sources of ozone, and these terms are set to zero. 
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Table 2-3.  Mass Balance Model Parameters 

Variable Definition Units Value Range 

f proximity Proximity factor  unitless f proximity ≥ 0 

CS  Concentration source ppm CS ≥ 0 

ES Emission source µg/hr ES ≥ 0 

R removal Removal rate due to 
deposition, filtration, and 
chemical reaction 

1/hr Rremoval ≥ 0 

R air exchange Air exchange rate 1/hr Rair exchange ≥ 0 

V Volume of 
microenvironment 

m3 V > 0 

 
Change in microenvironmental concentration due to influx of air is represented by the 

following equation: 

inexchangeairnpenetratioproximityambient
in RxfxfxC

dt
tdC C)(

Δ==     (2-5) 

where: 

 dCin(t), ∆Cin = Change in microenvironmental concentration due to influx of air 
(ppm/hour).  Within the time period of an hour, ∆Cin is assumed to 
be constant.   

  t =  Time 
 Cambient = Ambient hourly concentration (ppm) 
 fproximity = Proximity factor (unitless) 
 fpenetration = Penetration factor (unitless) 
 Rair exchange = Air exchange rate (1/hour) 

Change in microenvironmental concentration due to outflux of air is described by: 

)()( tCxR
dt

tdC
exchangeair

out
=      (2-6) 
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where: 

 dCout(t) = Change in microenvironmental concentration due to outflux of air 
(ppm/hour) 

Change in concentration due to deposition, filtration, and chemical degradation in a 
microenvironment is simulated based on the first-order equation: 

)()()((t)C tCxRtCRRR
dt

d
removalchemicalfiltrationdeposition

removal
=++=     (2-7) 

where: 

 dCremoval(t) = Change in microenvironmental concentration due to removal 
processes (ppm/hour) 

 Rdeposition = Removal rate of a pollutant from a microenvironment due to 
deposition (1/hour) 

 Rfiltration = Removal rate of a pollutant from a microenvironment due to 
filtration (1/hour) 

 Rchemical = Removal rate of a pollutant from a microenvironment due to 
chemical degradation (1/hour) 

 Rremoval = Removal rate of a pollutant from a microenvironment due to 
overall removal (1/hour) 

The mass balance equation for a pollutant in a microenvironment is described by: 

dt
tdC

dt
tdC

dt
tdC removaloutin

in
)()()(C −−=Δ     (2-8) 

where: 

 C(t) =  Concentration in a microenvironment at time t (ppm) 

 

  
 We are not modeling indoor emissions of ozone, so the optional term ∆Csource, which 
would represent an emission source inside the microenvironment, is not included..  Within the 
time period of an hour, dCin is assumed to be constant.   

Equation 2-8 combined with Equations 2-6 and 2-7 leads to: 

)()()(C tCRtCR
dt

tdC
removalexchangeair

in
in −−=Δ     (2-9) 

Solving the differential equation in Equation 2-9 leads to: 
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)exp())0(()( tR
R

CC
R

CtC mean
mean

in

mean

in
−

Δ
−+

Δ
=     (2-10) 

where: 

 C(0) = Concentration of a pollutant in a microenvironment at the beginning of a 
hour (ppm) 

 C(t) = Concentration of a pollutant in a microenvironment at time t within the 
time period of a hour (ppm) 

 Rmean = Rair exchange + Rremoval  (1/hour) 
 

Based on Equation 2-12, the following three hourly concentrations in a 
microenvironment are calculated: 

mean

in
equil R

C
tCC

Δ
=∞→= )(       (2-11) 

)(exp))0(( meanequilequilendhourly RCCCC −−−=     (2-12) 

mean

mean
equilequilmeanhourly R

R
CCC

dt

dttC
C

)(exp1
))0((

)(

1

0

1

0 −−
−+==

∫

∫
   (2-13) 

where: 

 Cequil = Equilibrium concentration in a microenvironment (ppm) 
 C(0) = Concentration in a microenvironment at the beginning of each hour 

(ppm) 
 Chourly end = Concentration in a microenvironment at the end of each hour 

(ppm) 
 Chourly mean = Hourly mean concentration in a microenvironment (ppm) 
 Rmean = Rair exchange + Rremoval (1/hour) 

At each hour time step of the simulation period, APEX uses Equations 2-14, 2-15, and 2-16 to 
calculate the hourly equilibrium, hourly ending, and hourly mean concentrations.  APEX reports 
hourly mean concentration as hourly concentration for a specific hour.  The calculation continues 
to the next hour by using C hourly end for the previous hour as C(0).  

2.4.4 Factors Model 

The factors method is simpler than the mass balance method.  It does not calculate 
concentration in a microenvironment from the concentration in the previous hour and it has 
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fewer parameters.  Table 2-4 lists the parameters required by the factors method to calculate 
concentrations in a microenvironment without emissions sources.   

Table 2-4.  Factors Model Parameters 

Variable Definition Units Value Range 

f proximity Proximity factor  unitless f proximity ≥ 0 

f penetration Penetration factor unitless 0 ≤ f penetration ≤ 1 

 
The factors method uses the following equation to calculate hourly concentration in a 

microenvironment from the user-provided hourly air quality data: 

npenetratioproximityambienthourly fxfxCC =     (2-14) 

where: 

 Chourly = Hourly concentration in a microenvironment (ppm or ppm) 
 Cambient = Hourly concentration in ambient environment (ppm or ppm) 
 fproximity = Proximity factor (unitless) 
 fpenetration = Penetration factor (unitless) 
 

2.4.5 Body Surface Area 

The algorithm for calculating body surface area (BSA) in APEX was developed by 
Burmaster (1998), and uses a univariate model for total skin area as a function of body weight.  
Through regression analysis, Burmaster determined that weight alone does as well as weight and 
height together in predicting total skin area, with the advantage of requiring only a single 
explanatory variable.  Total skin area was found to follow a lognormal distribution that is a 
function of body weight according to: 

6821.02781.2 BMeBSA −=       (2-15) 

where: 

  BSA = body surface area (m2) 
 BM = body mass (kg). 

2.4.6 Commuting Outside of the Study Area 

APEX allows for some flexibility in the treatment of persons in the modeled population 
who commute to destinations outside the study area.  By specifying “KeepLeavers = No” in the 
simulation control parameters file (see Section 3.1), people who work inside the study area but 
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live outside of it are not modeled, nor are people who live in the study area but work outside of 
it.  By specifying “KeepLeavers = Yes,” these commuters are modeled.  This triggers the use of 
two additional parameters, called LeaverMult and LeaverAdd.  While a commuter is at work, if 
the workplace is outside the study area, then the ambient concentration is assumed to be related 
to the average concentration over all air districts at the same point in time, and is calculated as:  

LeaverAddtavgLeaverMultionConcentratAmbient +×= )(   (2-16) 

where: 

 Ambient Concentration = Calculated ambient air concentrations for locations outside 
of the study area (ppm or ppm) 

 LeaverMult  = Multiplicative factor for city-wide average concentration, 
applied when working outside study area  

 avg(t)  = Average ambient air concentration over all air districts in 
study area, for time t (ppm or ppm) 

 LeaverAdd  = Additive term applied when working outside study area 

All microenvironmental concentrations for locations outside of the study area are determined 
from this ambient concentration by the same function as applies inside the study area. 

2.5 Exposure Calculations 

APEX calculates exposure as a time series of exposure concentrations that a simulated 
individual experiences during the simulation period.  APEX determines the exposure using 
hourly ambient air concentrations, calculated concentrations in each microenvironment based on 
these ambient air concentrations, and the minutes spent in a sequence of microenvironments 
visited according to the composite diary.  The hourly exposure concentration at any clock hour 
during the simulation period is determined using the following equation: 

T

tC
C

N

j
jjhourly

i

∑
== 1

)()(

     (2-17) 

where: 

 Ci  =  Hourly exposure concentration at clock hour I of the simulation period 
(μg/m3 or ppm) 

 N  =  Number of events (i.e., microenvironments visited) in clock hour I of 
the simulation period. 

 Chourly (j)  =  Hourly concentration in microenvironment j (μg/m3 or ppm) 
 t(j)  =  Time spent in microenvironment j (minutes) 
 T  =  60 minutes 
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From the hourly exposures, APEX calculates time series of 8-hour and daily average exposure 
concentrations that a simulated individual would experience during the simulation period.  
APEX then statistically summarizes and tabulates the hourly, 8-hour, and daily exposures. 

2.6 Model Output 

This section provides a brief overview of the APEX output files used in this analysis.  
Specific output generated for the purposes of this document are discussed in Section 3.1.  All of 
the output files used by APEX are ASCII text files.  Table 2-5 lists each of the output data types 
and provides descriptions of their content.  The names and locations, as well as the output table 
levels (e.g., output percentiles, cut-points), for these output files are specified by the user in the 
simulation control parameters file. 

Table 2-5.  APEX Output Files 

Output File Type Description 

Log The Log file contains the record of the APEX model simulation as it progresses.  
If the simulation completes successfully, the log file indicates the input files and 
parameter settings used for the simulation and reports on a number of different 
factors.  If the simulation ends prematurely, the log file contains error messages 
describing the critical errors that caused the simulation to end. 

Profile Summary The Profile Summary file provides a summary of each individual modeled in the 
simulation. 

Microenvironment 
Summary 

The Microenvironment Summary file provides a summary of the time and 
exposure by microenvironment for each individual modeled in the simulation. 

Sites The Sites file lists the tracts, districts, and zones in the study area, and identifies 
the mapping between them. 

Output Tables The Output Tables file contains a series of tables summarizing the results of the 
simulation.  The percentiles and cut-off points used in these tables are defined in 
the simulation control parameters file. 
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3. PREPARATION OF MODEL INPUTS 

The APEX model inputs require extensive analysis and preparation in order to ensure the 
model run gives valid and relevant results.  This chapter begins with a description of the selected 
model options and discusses their significance.  Following this introduction is a discussion of the 
model input files and other critical parameters.  The chapter goes on to describe the sources of 
data for the APEX input files.  File formats and physical file structures are not discussed in 
detail, as this information is presented in the APEX User’s Guide (EPA, 2005c). 

3.1 Model Options 

Many of the important characteristics of a model run in APEX are set in the simulation 
control parameters file.  In this file the user specifies the input and output files and their 
associated directories, as well as the basic parameters that characterize the run.  The settings used 
for the model runs are described here. 

The number of simulated persons in each model run was set to 35,000, an amount which 
initial tests indicated would be a large enough sample size to provide stable model results.  The 
parameters controlling the location and size of the simulated area were set to ensure that all the 
counties in each study area were included, and all counties were explicitly listed in the file. 

 The settings which allow for replacement of CHAD data that are missing gender, 
employment or age values were all set to preclude replacing missing data.  The width of the age 
window was set to 20 percent to ensure a wide range of diaries were selected.  The variable 
which controls the use of additional ages outside the target age window, was set to 0.1 to further 
enhance variability in diary selection.  

 The diary activity contributing the most to variability in exposure to ozone is the time 
spent outdoors, and we have selected that as the key predictor of exposure for the assembly of 
longitudinal diaries.  For school-age children, we take the diversity statistic D to be 0.19 and the 
autocorrelation to be 0.22.  These values were derived from the Southern California Children's 
Study.  We do not have data to base estimates of these parameters on for younger children and 
for adults.  We use the school-age children values for all ages, and will discuss the implications 
of errors in these estimates as part of the uncertainty analysis. 

Levels of physical activity were categorized by the Physical Activity Index (PAI), which 
is discussed in Appendix B.  Children were characterized as active if their median daily PAI over 
the period modeled is 1.75 or higher, a level characterized by exercise physiologists as being 
“moderately active” or “active” (McCurdy, 2000).  

3.2 Air Quality 

APEX requires hourly ambient ozone concentrations at a set of sites in the study area.  
These data were obtained from the EPA AIRS Air Quality Subsystem for the year 2004.  All of 
the sites in AIRS within the boundaries of the CSA were used in this analysis. 
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3.2.2 Missing Data Replacement 
 
 Missing air quality data were estimated by the following procedure.  Where there were 
consecutive strings of missing values (data gaps of less than 6 hours, missing values were 
estimated by linear interpolation between the valid values at the ends of the gap.  Remaining 
missing values at a monitor were estimated by fitting linear regression models for each hour of 
the day, with each of the other monitors, and choosing the model which maximizes R2 for each 
hour of the day, subject to the constraints that R2 be greater than 0.5 and the number of 
regression data values is at least 50.  If there were any remaining missing values at this point, for 
gaps of less than 9 hours, missing values were estimated by linear interpolation between the valid 
values at the ends of the gap.  Any remaining missing values not replaced. 
 

3.2.3 Spatial Interpolation 
 
 The hourly ozone concentrations at the AIRS sites in each CSA were interpolated to a 20 
by 20 km rectangular grid covering the Census tracts in the CSA using a simple inverse squared-
distance weighted average for each hour.  Grid points further than 75 km from the closest ozone 
monitor were dropped.  An analysis of the uncertainty of the ozone concentrations input to 
APEX is being conducted and will be discussed in the next draft of this Staff Paper. 
 
3.3 Meteorological Data 

Hourly temperature data are from the National Climatic Data Center Surface Airways 
Hourly TD-3280 dataset (NCDC Surface Weather Observations).  Daily average and 1-hour 
maxima are computed from these hourly data. 

 
There are two files that are used to provide meteorological data to APEX.  One file, the 

temperature zone location file, contains the locations of meteorological data recordings, 
expressed in latitude and longitude coordinates.  This file also contains start and end dates for 
data recording.  The temperature data file contains the data from the locations in the temperature 
zone location file.  This file contains daily maximum and daily average temperature readings for 
the period being modeled for the meteorological stations in and around the study area. 

 
3.4 Population Demographics 

APEX takes population characteristics into account to develop accurate representations of 
study area demographics.  Specifically, population counts by area and employment probability 
estimates are used to develop representative profiles of hypothetical individuals for the 
simulation. 

APEX is very flexible in the resolution of population data provided.  As long as the data 
are available, any resolution can be used (e.g., county, census tract, census block).  For this 
application of the model, we used census tract level data.  

Tract-level population counts come from the 2000 Census of Population and Housing 
Summary File 1.  Summary File 1 (SF 1) contains the 100-percent data, which is the information 



 24

compiled from the questions asked of all people and about every housing unit.  The first level of 
official Census race categories and their abbreviations are: 
 

• White (W) 
• Black or African American (B) 
• American Indian or Alaska native (N) 
• Asian (A) 
• Native Hawaiian or other Pacific Islander (OH) 
• Other single race (OO) 
• Two or more races combined (O2) 

 
The categories OH, OO, and O2 were combined into a single “Other” class (“O”) for modeling 
purposes.  Hispanics are not separated, as the Census Bureau does not consider Hispanic to be a 
race. 
 

In the 2000 U.S. Census, estimates of employment were developed by census tract.  
Employment data from the 2000 census can be found on the U.S. census web site at the address 
http://www.census.gov/population/www/cen2000/phc-t28.html (Employment Status: 2000- 
Supplemental Tables).  The file input to APEX is broken down by gender and age group, so that 
each gender/age group combination is given an employment probability fraction (ranging from 0 
to 1) within each census tract. The age groupings in this file are: 16-19, 20-21, 22-24, 25-29, 30-
34, 35-44, 45-54, 55-59, 60-61, 62-64, 65-69, 70-74, and >75.  Children under 16 years of age 
are assumed to be not employed. 

3.5 Commuting Database 

As part of the population demographics inputs, it is important to integrate working 
patterns into the assessment.  In addition to using estimates of employment by tract, APEX also 
incorporates home-to-work commuting data. 

Commuting data were originally derived from the 2000 Census and were collected as part 
of the Census Transportation Planning Package (CTPP).  These data are available from the U.S. 
DOT Bureau of Transportation Statistics (BTS) at the web site http://transtats.bts.gov/.  The data 
used to generate APEX inputs were taken from the “Part 3-The Journey To Work” files.  These 
files contain counts of individuals commuting from home to work locations at a number of 
geographic scales.  

These data were processed to calculate fractions for each tract-to-tract flow to create the 
national commuting data distributed with APEX.  This database contains commuting data for 
each of the 50 states and Washington, D.C.  

Commuting within the Home Tract 

The APEX data set does not differentiate people that work at home from those that 
commute within their home tract. 
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Commuting Distance Cutoff 

A preliminary data analysis of the home-work counts showed that a graph of log(flows) 
versus log(distance) had a near-constant slope out to a distance of around 120 kilometers.  
Beyond that distance, the relationship also had a fairly constant slope but it was flatter, meaning 
that flows were not as sensitive to distance.  A simple interpretation of this result is that up to 
120 km, the majority of the flow was due to persons traveling back and forth daily, and the 
numbers of such persons decrease fairly rapidly with increasing distance.  Beyond 120 km, the 
majority of the flow is made up of persons who stay at the workplace for extended times, in 
which case the separation distance is not as crucial in determining the flow. 

To apply the home-work data to commuting patterns in APEX, a simple rule was chosen.  
It was assumed that all persons in home-work flows up to 120 km are daily commuters, and no 
persons in more widely separated flows commute daily.  This meant that the list of destinations 
for each home tract was restricted to only those work tracts that are within 120 km of the home 
tract.  When the same cutoff was performed on the 1990 census data, it resulted in 4.75% of the 
home-work pairs in the nationwide database being eliminated, representing 1.3% of the workers.  
The assumption is that this 1.3% of workers do not commute from home to work on a daily 
basis.  It is expected that the cutoff reduced the 2000 data by similar amounts.   

Eliminated Records 

A number of tract-to-tract pairs were eliminated from the database for various reasons. A 
fair number of tract-to-tract pairs represented workers who either worked outside of the U.S. 
(9,631 tract pairs with 107,595 workers) or worked in an unknown location (120,830 tract pairs 
with 8,940,163 workers).  An additional 515 workers in the commuting database whose data 
were missing from the original files, possibly due to privacy concerns or errors, were also 
deleted.   

3.6 Activity Patterns – CHAD 

Exposure models use human activity pattern data to predict and estimate exposure to 
pollutants.  Different human activities, such as outdoor exercise, indoor reading, or driving, have 
different pollutant exposure characteristics.  In addition, different human activities require 
different metabolic rates, and higher rates lead to higher doses.  To accurately model individuals 
and their exposure to pollutants, it is critical to have a firm understanding of their daily activities.  

3.6.1 Origin of Data 

The Consolidated Human Activity Database (CHAD) provides comprehensive data on 
human activities through a database system of collected human diaries, or daily activity logs.  
The purpose of CHAD is to provide a basis for conducting multi-route, multi-media exposure 
assessments (McCurdy et al., 2000). 

The data contained within CHAD come from multiple surveys with highly varied 
structures (Table 3-1).  In general, the surveys have a data foundation based on daily diaries of 
human activity.  This is the foundation from which CHAD was created.  Individuals filled out 
diaries of their daily activities and this information was input and stored in CHAD.  Relevant 
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data for these individuals, such as age, are included as well.  In addition, CHAD contains 
activity-specific metabolic distributions developed from literature-derived data, which are used 
to provide an estimate of metabolic rates of respondents through their various activities.  

3.6.2 CHAD Data 

There are four CHAD-related input files used in the APEX system.  Two of these files 
are downloaded directly from the “Query Questionnaire” link on the CHADNet 
(http://www.epa.gov/chadnet1) page, and then manipulated to fit into the APEX framework.  
These are the human activity diaries file and the personal data file. 

The third input file contains metabolic information for different activities listed in the diary file.  
These metabolic activity levels are in the form of distributions.  Some activities are specified as a 
single point value (for instance, sleep), while others, such as athletic endeavors or manual labor, 
are normally, lognormally, or otherwise statistically distributed.  APEX samples from these 
distributions and calculates values to simulate the variable nature of activity levels among 
different people. 

The fourth input file maps five-digit location codes used in the diary file to APEX 
microenvironments.  Because each simulation may contain different numbers and types of 
microenvironments, it is important to ensure that the codes map properly to the appropriate 
microenvironment.  If this file does not contain reasonable mapping, the model will not 
accurately simulate exposure related to daily activities. 
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Table 3-1.  Description of Studies Used in CHAD 
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Baltimore A single 
building in 
Baltimore 

01/1997-
02/1997, 
07/1998-
08/1998 

72-93 26 391 Diary Williams et al, 2000 

California 
Adolescents and 
Adults (CARB) 

California 10/1987-
09/1988 

12-17 

18-94 

183 

1,579 

183 

1,579 

Recall; Random Robinson et al. (1989), 
Wiley et al. (1991a) 

California 
Children 
(CARB) 

California 04/1989- 
02/1990 

0-11 1,200 1,200 Recall; Random Wiley et al. (1991b) 

Cincinnati 
(EPRI) 

Cincinnati 
metropolitan 
area 

03/1985-
04/1985, 
08/1985 

0-86 888 2,614 Diary; Random Johnson (1989) 

Denver (EPA) Denver 
metropolitan 
area 

11/1982- 
02/1983 

18-70 432 805 Diary; Random Johnson (1984), Akland 
et al. (1985) 

Los Angeles: 
Elementary 
School Children 

Los Angeles 10/1989 10-12 17 51 Diary Spier et al. (1992) 

Los Angeles: Los Angeles 09/1990- 13-17 19 43 Diary Spier et al. (1992) 
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High School 
Adolescents 

10/1990 

National: 
NHAPS-Air 

National 09/1992-
10/1994 

0-93 4,723 4,723 Recall; Random Klepeis et al. (1995), 
Tsang and Klepeis (1996)

National: 
NHAPS-Water 

National 09/1992-
10/1994 

0-93 4,663 4,663 Recall; Random Klepeis et al. (1995), 
Tsang and Klepeis (1996)

University of 
Michigan 
children 

National 02/1997-
12/1997 

0-13 2,887 5,616 Recall; Random www.isr.umich/edu/frc/c
hildevelopment/home.ht
ml 

Valdez, AK Valdez 
metropolitan 
area 

11/1990-
10/1991 

11-71 401 401 Recall; Random Goldstein et al. (1992) 

Washington, 
D.C. (EPA) 

Wash., D.C. 
metropolitan 
area 

11/1982-
02/1983 

18-98 699 699 Diary; Random Hartwell et al. (1984), 
Akland et al. (1985) 
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 Personal Information file.  CHAD personal data are contained in the CHAD 
questionnaire file that is distributed with APEX  This file also has information for each day 
individuals have diaries.  The different variables in this file are: 
 

• The study, person, and diary day identifiers 
• Day of week 
• Gender 
• Race 
• Employment status 
• Age in years 
• Maximum temperature in degrees Celsius for this diary day 
• Mean temperature in degrees Celsius for this diary day 
• Occupation code 
• Time, in minutes, during this diary day for which no data are included in the database 

Diary Events file.  The human activity diary data are contained in a file that is distributed 
with APEX.  This is a large file because it contains diaries for about 23,000 people broken out at 
intervals ranging from one minute to one hour.  These diaries vary in length from one to 15 days.  
This file contains the following variables: 

• The study, person, and diary day identifiers 
• Start time of this activity 
• Number of minutes for this activity 
• Activity code 
• Location code 

Activity Specific Metabolic file.  The third CHAD file is also distributed with APEX and 
contains the metabolic parameters for each of the CHAD activities. 

3.7 Physiological Distributions 

APEX requires physiological parameters for subjects in order to accurately model their 
pollutant intake via metabolic processes.  This is because physiological differences may cause 
people with the same exposure and activity scenarios to have different pollutant intake levels.  
The physiological parameters file distributed with APEX is described in the APEX User’s Guide 
(US EPA, 2005c). 

 
3.8 Microenvironment Specifications 

 The microenvironments in APEX provide the specific locations within an air quality 
district where modeled individuals are exposed to pollutants.  Microenvironments are used to 
capture the differences between exposure concentrations in different types of environments (e.g., 
indoors, in cars, outdoors) within an area with the same estimated ambient air concentration.  
There are two basic methods for calculating concentrations in microenvironments: the transfer 
factors method and the mass balance method. The parameters for both factors and mass balance 
calculations used in this simulation are listed in Table 3-2. 
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Table 3-2.  Microenvironment Parameter Information 

Calculation Method 
Parameter 
Type with 

Abbreviation 

Units  Distribution 

Proximity (PR) unitless Normal distribution Transfer Factors 

Penetration (PE) unitless Normal distribution 
Proximity (PR) unitless Constant = 1 
DecayRate (DE) 1/hr  Lognormal distribution 

Mass Balance 

AirExRate 
(AER) Air changes/hr  Lognormal distribution 

 
 The factors method is used to model simple environments, like outdoor areas, that do not 
contain pollutant sources.  The ambient ozone concentrations are from the air quality data input 
file.  There are two parameters that affect the pollutant concentration calculation in the factors 
method, the proximity and penetration factors.  The proximity factor is a unitless parameter that 
represents the proximity of the microenvironment to a monitoring station.  The penetration factor 
is a unitless parameter that represents the fraction of pollutant entering a microenvironment from 
outside the microenvironment via air exchange.  The development of the proximity factors and 
penetration factors used in this analysis is discussed in Appendix A.  
 

The mass balance method is more appropriate for complex environments.  In addition to 
proximity factors, penetration factors and concentration sources, this method supports parameters 
for emissions sources, decay rate, air exchange rate, volume, and the average removal rate.  Each 
of these parameters can be modeled within the microenvironment or left out of the simulation.  
Both decay rate and emissions source, like concentration source, have a default value of zero, 
which gives them no effect on the simulation.  The air exchange rate and volume have no default 
values.  They only effect the microenvironment calculation if they are specifically included in 
the definition of the microenvironment.  The average removal rate, which is the sum of the decay 
rate and air exchange rate, can be explicitly modeled or left out of the definition of the 
microenvironment.  

 
Several microenvironments using the mass balance method utilize one or more of these 

additional parameters.  See Appendix A for a full description of the values used for the 
development of these parameters.  

 
3.8.1 Microenvironments Modeled 

 In APEX, microenvironments provide the exposure locations for modeled individuals.  
For exposures to be estimated accurately, it is important to have realistic microenvironments that 
match closely to what the locations where actual people spend time on a daily basis.  

As discussed previously, the two methods available in APEX for calculating pollutant 
levels within microenvironments are: 1) factors and 2) mass balance.  A list of 
microenvironments used in this study, the calculation method used, and the parameters used to 
calculate the microenvironment concentrations can be found in Table 3-3. 
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Table 3-3.  List of Microenvironments and Calculation Methods Used  

Microenvironment Calculation 
Method 

Parameter Types 
used 

Indoors – Residence Mass balance AER and DE 

Indoors – Bars and restaurants Mass balance AER and DE 

Indoors – Schools Mass balance AER and DE 

Indoors – Day-care centers Mass balance AER and DE 

Indoors – Office Mass balance AER and DE 

Indoors – Shopping Mass balance AER and DE 

Indoors – Other Mass balance AER and DE 

Outdoors – Near road Factors PR 

Outdoors – Public garage - parking lot Factors PR 

Outdoors – Other Factors None 

In-vehicle – Cars and Trucks Factors PE and PR 

In-vehicle - Mass Transit (bus, 
subway, train) 

Factors PE and PR 

 

Each of the microenvironments is designed to simulate an environment in which people 
spend time during the day.  CHAD locations are linked to the different microenvironments in the 
Microenvironment Mapping File (see Section 3.8.4).  There are many more CHAD locations 
than microenvironment locations (there are 113 CHAD codes versus 12 microenvironments in 
this assessment) and thus most of the microenvironments have multiple CHAD locations mapped 
to them.   

The mass balance microenvironments have two parameters defined, the air exchange rate 
and the decay rate.  The air exchange rate models the exchange of outside air with the 
microenvironment, while the decay rate models the rate of ozone breakdown or removal within 
the microenvironment.  The development of air exchange rate values for this analysis is 
discussed in Section 3.8.2 and Appendix A.  The development of the decay rate distribution is 
described in Section 3.8.3.   
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3.8.2 Microenvironment Descriptions 

Microenvironment #1: Indoors-Residence.  The Indoors-Residence Microenvironment 
accounts for three variables that affect ozone exposure: whether or not air conditioning is 
present, the average outdoor temperature, and the ozone decay rate.  The first two of these 
variables affect the air exchange rate.  An excerpt from the input file describing this 
microenvironment appears after this paragraph.  

The first section of the excerpt specifies the air exchange rate distributions for the 

microenvironment.  Average temperature and air conditioning presence, which are city-specific, 
were coded into air exchange rate conditional variables C1 and C2, respectively.  Average 
temperatures were broken into five categories: less than 50 degrees F, 50 to 68, 68 to 77, 77 to 
86, and 86 and above.  Using data from several studies, exposure functions in the form of 
lognormal distributions were generated.  These functions are specific to the cities in the model 
run.  For cities with similar climatic and other relevant characteristics, the same distributions 
were used (e.g., New York, Philadelphia, and Boston use the same distributions).  The data 
sources used and the development of these functions are discussed in detail in Appendix A.  The 
ozone decay rate is modeled as a lognormal distribution (as shown in the last section of the 

Micro number      = 1         !     Indoors - residence 
Parameter Type    = AER 
Condition # 1     = AvgTempCat 
Condition # 2     = AC_Home 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1     1   Lognormal   .1      10      0.956   1.962 
1        1           1          1       2     1     1   Lognormal   .1      10      0.517   2.017 
1        1           1          1       3     1     1   Lognormal   .1      10      0.524   2.189 
1        1           1          1       4     1     1   Lognormal   .1      10      0.392   2.076 
1        1           1          1       5     1     1   Lognormal   .1      10      0.392   2.076 
1        1           1          1       1     2     1   Lognormal   .1      10      0.754   2.317 
1        1           1          1       2     2     1   Lognormal   .1      10      0.698   2.180 
1        1           1          1       3     2     1   Lognormal   .1      10      1.367   2.292 
1        1           1          1       4     2     1   Lognormal   .1      10      1.067   1.989 
1        1           1          1       5     2     1   Lognormal   .1      10      1.067   1.989 
 
Micro number      = 1 
Parameter Type    = DE 
ResampHours       = NO 
ResampDays        = NO 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1          1           1      1      1    1  LogNormal  0.95    8.05    2.51   1.53 



 

 33

excerpt).  The development of the decay rate is discussed in Section 3.8.3. The file excerpt 
describing this microenvironment follows this paragraph.   

In the code excerpt, there is a large block of numbers (which totals ten rows) in the air 
exchange rate portion of the file.  In this block, the fifth number across, which falls under “C1” 
in the excerpt, represents the temperature.  The code “C1” represents “Conditional Variable 1.”  
In this range, the numeral one represents temperatures below 50 Fahrenheit, two represents 
temperatures from 50 to 68, three represents 68 to 77, four represents 77 to 86, and five 
represents 86 and above.  The sixth number in this block, which falls under “C2” and ranges 
from one to two, represents air conditioning status, with the numeral one representing having an 
air conditioning, and two not having it.  There are five distributions listed for each value, for a 
total of ten distributions.  In the above example, there are actually four different distributions for 
each air conditioning setting; the last two distributions for each air conditioning setting (which 
represent temperature ranges from 77 to 86, and 86 and above) are the same.   

An example of how this microenvironment would function may help to elucidate the 
code.  For the city of Atlanta, it is estimated that 85 percent of the population has air 
conditioning in the home, and 15 percent does not (see Appendix A for more information on the 
origin of these data).  These percentages are included in the Profile Functions file, which is 
discussed in Section 3.9.  Using these percentages, APEX can stochastically generate air 
conditioning status for a profiled individual.  In addition, APEX takes as input the daily average 
temperature in Atlanta.  Based on the air conditioning status and the temperature, the appropriate 
one of the ten distributions listed is chosen for a particular profile.  For example, if the profile 
had air conditioning and the average temperature was 70, the third row would be chosen to 
model the air exchange rate.  If the profile had no air conditioning, and the average temperature 
was 90, the tenth row would be chosen. 

 Microenvironments 2-7: All other indoor microenvironments.  The remaining five 
indoor microenvironments, which represent Bars and Restaurants, Schools, Day Care Centers, 
Office, Shopping, and Other environments, are all modeled using the same data and functions.  
The data and methodology for developing these functions are detailed in Appendix A.  An 
excerpt from the input file describing one of these microenvironments follows this paragraph. 

Micro number      = 2         !     Bars & restaurants     
Parameter Type    = AER 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1    1  LogNormal  0.07   13.8   1.109  3.015 
 
Micro number      = 2 
Parameter Type    = DE 
ResampHours       = NO 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1    1  LogNormal   0.95   8.05   2.51   1.53 
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As with the Indoor-Residence microenvironment, these microenvironments use both air 
exchange rates and decay rates to calculate exposures within the microenvironment.  The air 
exchange rate distribution was developed based on an indoor air quality study (Persily et al, 
2005).  This research indicated that the lognormal distributions should provide effective 
modeling of ozone exposure.   The decay rate is the same as used in the Indoor-Residence 
microenvironment, and is discussed in Section 3.8.3.  

Microenvironments 8 and 9: Outdoor microenvironments.  The two outdoor 
microenvironments, which cover Near Road and Public Garage/Parking Lot environments, are 
different from the indoor microenvironments in that they use the simpler factors method to 
calculate pollutant exposure.  Proximity factors were developed to estimate exposures in these 
microenvironments.  Penetration factors were not used as air exchange in an outdoor 
environment is generally expected to result in sufficient atmospheric mixing. The optional 
concentration source variable is not relevant to ozone studies and was not included.  An excerpt 
from the file describing this microenvironment follows this paragraph. 

The distribution for the proximity factor was developed from an ozone study (Johnson et 
al, 1995) conducted in the greater Cincinnati metropolitan area in August and September, 1994 
(see Appendix A for details on this study).  Vehicle tests were conducted according to an 
experimental design specifying the vehicle type, road type, vehicle speed, and ventilation mode. 

Microenvironment 10:  Outdoors-Other.  The outdoors, other ozone concentrations 
should be well represented by the ambient monitors.  Therefore the penetration factor and 
proximity factor for this microenvironment were set to the default value of 1, which eliminates 
their effect on microenvironment concentrations. 

 
Microenvironments 11 and 12:  In Vehicle- Cars and Trucks, and Mass Transit.  Both 

of the In Vehicle microenvironments were calculated using the same values.  These 
microenvironments use the factors method to calculate pollutant exposure.  Both proximity 
factors and penetration factors were developed to estimate exposures in the microenvironments.  
Again, the optional concentration source variable is not relevant to ozone studies and was not 
used.  An excerpt from the file describing this microenvironment follows this discussion. 

The proximity factor distribution was developed using the inside-vehicle to outside-
vehicle ratios from the Cincinnati ozone study previously mentioned (Johnson et al, 1995).  
Three penetration factor distributions were developed, one for local roads, one for urban roads, 
and one for interstates.  The proportion of vehicle miles traveled in each city was estimated and 
used to weight the selection of the distributions.  These weightings are included in the Profile 
Functions file, which is discussed in Section 3.9.  Again, these distributions were developed 
based on the previously mentioned Cincinnati ozone study.   

Micro number      = 8         !     Outdoor near road 
Parameter Type    = PR 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1          1           1       1     1     1   Normal     0.422   1.0    0.755  0.203 
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3.8.3 Ozone Decay and Deposition Rates  

For this analysis, the same ozone decay rate distribution was used for all 
microenvironments that use the mass balance method.  This distribution is based on data from an 
ozone decay study (Lee et al., 1999).  This study measured decay rates in the living rooms of 43 
residences in Southern California.  Measurements of decay rates in a second room were made in 
24 of these residences.  The 67 decay rates range from 0.95 to 8.05 hour-1.  A lognormal 
distribution was fit to the measurements from this study, yielding a geometric mean of 2.5 and a 
geometric standard deviation of 1.5. 
 

3.8.4 Microenvironment Mapping 

The purpose of the Microenvironment Mapping file is to match the APEX 
Microenvironments to CHAD Location codes.  Table 3-4 gives the mapping used for the APEX 
simulations. 

Table 3-4.  Mapping of CHAD activity locations to APEX microenvironments 
 
CHAD Loc.  Description                            APEX micro 
---------  ------------------------------------------------- 
U          Uncertain of correct code            =   -1  Unknown                        
X          No data                              =   -1  Unknown                        
30000      Residence, general                   =    1  Indoors-Residence              
30010      Your residence                       =    1  Indoors-Residence              
30020      Other residence                      =    1  Indoors-Residence              
30100      Residence, indoor                    =    1  Indoors-Residence              
30120      Your residence, indoor               =    1  Indoors-Residence              
30121      ..., kitchen                         =    1  Indoors-Residence              
30122      ..., living room or family room      =    1  Indoors-Residence              
30123      ..., dining room                     =    1  Indoors-Residence              
30124      ..., bathroom                        =    1  Indoors-Residence              
30125      ..., bedroom                         =    1  Indoors-Residence              
30126      ..., study or office                 =    1  Indoors-Residence              

Micro number      = 11        !     Cars & trucks  
Parameter Type    = PR 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1           1          1       1     1     1    Normal      0.1     1.0     0.300  0.232 
 
Micro number      = 11         
Parameter Type    = PE 
Condition # 1     = Conditional1 
ResampHours       = YES 
ResampDays        = YES 
ResampWork        = YES 
Block DType Season Area C1  C2  C3   Shape       Min    Max    Par1   Par2 
1        1            1         1       1     1     1    Normal     0.422   1.0    0.755  0.203 
1        1            1         1       2     1     1    Normal     0.355   1.0    0.754  0.243 
1        1            1         1       3     1     1    Normal     0.093   1.0    0.364  0.165 
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30127      ..., basement                        =    1  Indoors-Residence              
30128      ..., utility or laundry room         =    1  Indoors-Residence              
30129      ..., other indoor                    =    1  Indoors-Residence              
30130      Other residence, indoor              =    1  Indoors-Residence              
30131      ..., kitchen                         =    1  Indoors-Residence              
30132      ..., living room or family room      =    1  Indoors-Residence              
30133      ..., dining room                     =    1  Indoors-Residence              
30134      ..., bathroom                        =    1  Indoors-Residence              
30135      ..., bedroom                         =    1  Indoors-Residence              
30136      ..., study or office                 =    1  Indoors-Residence              
30137      ..., basement                        =    1  Indoors-Residence              
30138      ..., utility or laundry room         =    1  Indoors-Residence              
30139      ..., other indoor                    =    1  Indoors-Residence              
30200      Residence, outdoor                   =   10  Outdoors-Other                 
30210      Your residence, outdoor              =   10  Outdoors-Other                 
30211      ..., pool or spa                     =   10  Outdoors-Other                 
30219      ..., other outdoor                   =   10  Outdoors-Other                 
30220      Other residence, outdoor             =   10  Outdoors-Other                 
30221      ..., pool or spa                     =   10  Outdoors-Other                 
30229      ..., other outdoor                   =   10  Outdoors-Other                 
30300      Residential garage or carport        =    7  Indoors-Other                  
30310      ..., indoor                          =    7  Indoors-Other                  
30320      ..., outdoor                         =   10  Outdoors-Other                 
30330      Your garage or carport               =    1  Indoors-Residence              
30331      ..., indoor                          =    1  Indoors-Residence              
30332      ..., outdoor                         =   10  Outdoors-Other                 
30340      Other residential garage or carport  =    1  Indoors-Residence              
30341      ..., indoor                          =    1  Indoors-Residence              
30342      ..., outdoor                         =   10  Outdoors-Other                 
30400      Residence, none of the above         =    1  Indoors-Residence              
31000      Travel, general                      =   11  In Vehicle-Cars_and_Trucks     
31100      Motorized travel                     =   11  In Vehicle-Cars_and_Trucks     
31110      Car                                  =   11  In Vehicle-Cars_and_Trucks     
31120      Truck                                =   11  In Vehicle-Cars_and_Trucks     
31121      Truck (pickup or van)                =   11  In Vehicle-Cars_and_Trucks     
31122      Truck (not pickup or van)            =   11  In Vehicle-Cars_and_Trucks     
31130      Motorcycle or moped                  =    8  Outdoors-Near_Road             
31140      Bus                                  =   12  In Vehicle-Mass_Transit        
31150      Train or subway                      =   12  In Vehicle-Mass_Transit        
31160      Airplane                             =    0  Zero_concentration             
31170      Boat                                 =   10  Outdoors-Other                 
31171      Boat, motorized                      =   10  Outdoors-Other                 
31172      Boat, other                          =   10  Outdoors-Other                 
31200      Non-motorized travel                 =   10  Outdoors-Other                 
31210      Walk                                 =   10  Outdoors-Other                 
31220      Bicycle or inline skates/skateboard  =   10  Outdoors-Other                 
31230      In stroller or carried by adult      =   10  Outdoors-Other                 
31300      Waiting for travel                   =   10  Outdoors-Other                 
31310      ..., bus or train stop               =    8  Outdoors-Near_Road             
31320      ..., indoors                         =    7  Indoors-Other                  
31900      Travel, other                        =   11  In Vehicle-Cars_and_Trucks     
31910      ..., other vehicle                   =   11  In Vehicle-Cars_and_Trucks     
32000      Non-residence indoor, general        =    7  Indoors-Other                  
32100      Office building/ bank/ post office   =    5  Indoors-Office                 
32200      Industrial/ factory/ warehouse       =    5  Indoors-Office                 
32300      Grocery store/ convenience store     =    6  Indoors-Shopping               
32400      Shopping mall/ non-grocery store     =    6  Indoors-Shopping               
32500      Bar/ night club/ bowling alley       =    2  Indoors-Bars_and_Restaurants   
32510      Bar or night club                    =    2  Indoors-Bars_and_Restaurants   
32520      Bowling alley                        =    2  Indoors-Bars_and_Restaurants   
32600      Repair shop                          =    7  Indoors-Other                  
32610      Auto repair shop/ gas station        =    7  Indoors-Other                  
32620      Other repair shop                    =    7  Indoors-Other                  
32700      Indoor gym /health club              =    7  Indoors-Other                  
32800      Childcare facility                   =    4  Indoors-Day_Care_Centers       
32810      ..., house                           =    1  Indoors-Residence              
32820      ..., commercial                      =    4  Indoors-Day_Care_Centers       
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32900      Large public building                =    7  Indoors-Other                  
32910      Auditorium/ arena/ concert hall      =    7  Indoors-Other                  
32920      Library/ courtroom/ museum/ theater  =    7  Indoors-Other                  
33100      Laundromat                           =    7  Indoors-Other                  
33200      Hospital/ medical care facility      =    7  Indoors-Other                  
33300      Barber/ hair dresser/ beauty parlor  =    7  Indoors-Other                  
33400      Indoors, moving among locations      =    7  Indoors-Other                  
33500      School                               =    3  Indoors-Schools                
33600      Restaurant                           =    2  Indoors-Bars_and_Restaurants   
33700      Church                               =    7  Indoors-Other                  
33800      Hotel/ motel                         =    7  Indoors-Other                  
33900      Dry cleaners                         =    7  Indoors-Other                  
34100      Indoor parking garage                =    7  Indoors-Other                  
34200      Laboratory                           =    7  Indoors-Other                  
34300      Indoor, none of the above            =    7  Indoors-Other                  
35000      Non-residence outdoor, general       =   10  Outdoors-Other                 
35100      Sidewalk, street                     =    8  Outdoors-Near_Road             
35110      Within 10 yards of street            =    8  Outdoors-Near_Road             
35200      Outdoor public parking lot /garage   =    9  Outdoors-Public_Garage-Parking 
35210      ..., public garage                   =    9  Outdoors-Public_Garage-Parking 
35220      ..., parking lot                     =    9  Outdoors-Public_Garage-Parking 
35300      Service station/ gas station         =   10  Outdoors-Other                 
35400      Construction site                    =   10  Outdoors-Other                 
35500      Amusement park                       =   10  Outdoors-Other                 
35600      Playground                           =   10  Outdoors-Other                 
35610      ..., school grounds                  =   10  Outdoors-Other                 
35620      ..., public or park                  =   10  Outdoors-Other                 
35700      Stadium or amphitheater              =   10  Outdoors-Other                 
35800      Park/ golf course                    =   10  Outdoors-Other                 
35810      Park                                 =   10  Outdoors-Other                 
35820      Golf course                          =   10  Outdoors-Other                 
35900      Pool/ river/ lake                    =   10  Outdoors-Other                 
36100      Outdoor restaurant/ picnic           =   10  Outdoors-Other                 
36200      Farm                                 =   10  Outdoors-Other                 
36300      Outdoor, none of the above           =   10  Outdoors-Other                 

 

3.9 Profile Functions 
 
The Profile Functions file contains settings used to generate results for variables related 

to simulated individuals.  While certain settings for individuals are generated automatically by 
APEX based on other input files, including demographic characteristics, others can be manually 
specified using this file.  For example, the file may contain settings for determining whether the 
profiled individual has a car air conditioner, a gas stove, etc.  The details and mechanics of this 
process are discussed in Section 2.3.2.   

 
As discussed in Section 3.8.2, the Profile Functions file contains fractions indicating the 
prevalence of air conditioning in the cities modeled in this experiment.  APEX uses these 
fractions to stochastically generate air conditioning status for profiled individuals.  The 
derivation of this data is discussed in Appendix A.  An excerpt from the file describing this 
microenvironment follows this paragraph. 
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One user-defined function was included in the Profile Functions file in order to reflect 
regional driving characteristics.  The Conditional1 function is used to simulate In-vehicle 
penetration factors for modeled individuals.  An excerpt from the file describing this 
microenvironment follows this paragraph. 

 
 
 
 
 
 
 
 

 
 
The function contains different distributions for three road types: urban, local, and 

interstate.  These distributions model how the road type affects pollutant level penetration into 
the microenvironment.  For each of the 12 locations modeled, the percentage of vehicle miles 
traveled on each road type was generated from Federal Highway Administration data.  These 
percentages are listed as fractions on the fifth line of the above excerpt.  Using these percentages, 
the function allowed each of the distributions, which are defined in the microenvironment file, to 
be selected based on the amount of vehicle miles traveled in the area.  See Appendix A for more 
information of development of the distributions in the microenvironments. 
 
4. PRINCIPAL LIMITATIONS AND UNCERTAINTIES OF THE MODELING 

APPROACH 

Inhalation exposure and risk modeling attempts to simulate real world conditions in order 
to accurately estimate exposures to pollutants and their resulting risk.  In general, the methods 
and the model used in this assessment conform to the most contemporary modeling 
methodologies available.  APEX is a powerful, highly customizable modeling system that allows 
for the realistic estimation of air pollutant exposure to individuals.  Since it is based on human 
activity diaries and accounts for all important variables known to affect exposure, it has the 
ability to effectively approximate actual conditions.  In addition, the data used to run the system 
were chosen because they were the best available to ensure realistic and defensible results.  
However, there are constraints and uncertainties with the modeling approach and the input data 
that limit the realism and accuracy of the model results. 

AC_Home 
! Has air conditioning at home 
TABLE 
INPUT1 PROBABILITY 2     “A/C probabilities” 
0.85 0.15 
RESULT INTEGER 2         “Yes/No” 
1 2 
# 

Conditional1 
! Penetration values for vehicles ME 11 and 12 
TABLE 
INPUT1 PROBABILITY 3    
0.14 0.55 0.31 
RESULT INTEGER 3         
1 2 3 
# 
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4.1 Methodology 

As described in Appendix A, several ozone and air pollution studies were reviewed, and 
data from these studies were used to develop the parameters and factors that were used to build 
the microenvironments in this assessment.  A constraint on this effort is that there are limited 
ozone exposure studies. In addition, there aregeographical limitations of the studies used to 
develop factors for this assessment.  While these studies were generally performed in the 
geographical areas modeled in this assessment or in similar areas, there were differences that 
could lend uncertainty.  For example, the ozone study (Johnson et al, 1995) which was used to 
develop proximity factors for in-vehicle microenvironments for all 12 cities was performed in 
Cincinnati.  In addition, the air exchange rate distributions used for Boston, Chicago, Cleveland, 
and Philadelphia were developed from a study conducted in New York City.  It is possible that 
climatic and other differences among these cities would produce different results.  Scientific 
judgments were made in choosing appropriate data and information sources to best model ozone 
exposures.  However, it is possible that despite best efforts there could be different 
interpretations about which data sources and methodologies are appropriate.   

There are other areas of the modeling approach that have either assumptions or estimates 
that could affect results.  For example, the microenvironments that are used in the program are 
matched to CHAD data.  Because there are fewer microenvironments than CHAD locations, 
there is some information lost in this translation.  

4.2 Input Data 

Modeling results are heavily dependent on the quality of the data that are input to the 
system.  The data for this analysis were selected in order to give the best opportunity to simulate 
actual conditions.  One benefit of using well characterized data as inputs to the model is that 
limitations and other problems with the data are well understood.  Still, the limitations and 
uncertainties of each of the data streams affect the overall quality of the model output.  These 
issues and how they specifically affect each data stream are discussed in this section.  The 
highest quality data streams are discussed first.   

4.2.1 Meteorological Data   

The least problematic of the data input to APEX are likely the meteorological data.  
These data are taken directly from monitoring stations in the assessment areas.  One strength of 
these data is that it is relatively easy to see significant errors if they appear in the data.  Because 
general climactic conditions are known for each area simulation, it would have been apparent 
upon review if there were outliers in the dataset.  However, there are limitations in the use of 
these data.  Because APEX only uses one temperature value per day, the model does represent 
hour-to-hour variations in meteorological conditions throughout the day that may affect both 
ozone formation and exposure estimates within microenvironments. 

4.2.2 Air Quality Data 

The air quality data are taken directly from monitoring sites within each of the study 
areas, and thus the data are reliable and of high quality.  Some data issues specific to air quality 
data result from the nature of pollutant formation and dispersion.  Because many variables affect 
pollutant fate and transport, it is difficult to determine exactly how concentrations in the vicinity 
of a monitoring station may differ from the results at the station.  Pollutant levels are highly 
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dependent on weather and wind, and other unknowns may effect how well the data represent 
pollutant concentrations in the area.  In addition, because APEX only uses hourly average ozone 
concentrations, the model does not have a more temporally refined pollutant concentration 
record, which may affect the accuracy of both ozone concentration and exposure estimates. 

4.2.3 Population and Commuting Data 

The population and commuting data are drawn from U.S. Census data from the year 
2000.  This is a high quality data source for nationwide population data in the U.S.  However, the 
data do have limitations.  The Census used random sampling techniques instead of attempting to 
reach all households in the U.S., as it has in the past.  While the sampling techniques are well 
established and trusted, they introduce some uncertainty to the system.  The Census has a quality 
section (http://www.census.gov/quality/) that discusses these and other issues with Census data.   

In addition to these data quality issues, certain simplifying assumptions were made in 
order to better match reality or to make the data match APEX input specifications.  For example, 
the APEX dataset does not differentiate people that work at home from those that commute 
within their home tract, and individuals that commute over 120 km a day were assumed to not 
commute daily.  In addition to emphasizing some of the limitations of the input data, these 
assumptions introduce some uncertainty to the results.  These issues were discussed in Sections 
3.5 and 3.6.   

4.2.4 Physiological Data 

Because the physiological data were drawn from a sample, it is possible that they do not 
accurately mirror national physiological characteristics.  Furthermore, on a larger scale, it is 
possible that national physiological characteristics have drifted somewhat since the publication 
of these data.  For example, both the marked rise in obesity and ongoing national demographic 
shifts could result in some inaccuracies.   

4.2.5 Activity Pattern Data   

It is probable that the CHAD data used in the system is the most subject to limitations 
and uncertainty of all the data used in the system.  Much of the data used to generate the daily 
diaries are over 20 years old.  While the specifics of people’s daily activities may not have 
changed much over the years, it is certainly possible that some differences do exist.  In addition, 
the CHAD data are taken from numerous surveys that were performed for different purposes.  
Some of these surveys lasted only a day while others went on for weeks.  Some of the studies 
were specifically designed not to be representative of the population at large in order to fulfill 
their specific mission when they were conducted.  These issues affect the overall quality of the 
data that now resides in CHAD. 
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DRAFT MEMORANDUM 

 
To: John Langstaff 

From: Jonathan Cohen, Hemant Mallya, Arlene Rosenbaum 

Date: September 30, 2005 

Re: EPA 68D01052, Work Assignment 3-08. Analysis of Air Exchange Rate Data 
  
 
EPA is planning to use the APEX exposure model to estimate ozone exposure in 12 cities / 
metropolitan areas:  Atlanta, GA; Boston, MA; Chicago, IL; Cleveland, OH; Detroit, MI; 
Houston, TX; Los Angeles, CA; New York, NY; Philadelphia, PA; Sacramento, CA; St. Louis, 
MO-IL; Washington, DC. As part of this effort, ICF Consulting has developed distributions of 
residential and non-residential air exchange rates (AER) for use as APEX inputs for the cities to 
be modeled. This memorandum describes the analysis of the AER data and the proposed APEX 
input distributions. Also included in this memorandum are proposed APEX inputs for 
penetration and proximity factors for selected microenvironments. 
 
Residential Air Exchange Rates 
 
Studies.  Residential air exchange rate (AER) data were obtained from the following seven 
studies: 
 

Avol:  Avol et al, 1998. In this study, ozone concentrations and AERs were measured at 
126 residences in the greater Los Angeles metropolitan area between February and 
December, 1994. Measurements were taken in four communities:  Lancaster, Lake 
Gregory, Riverside, and San Dimas. Data included the daily average outdoor 
temperature, the presence or absence of an air conditioner (either central or room), and 
the presence or absence of a swamp (evaporative) cooler. Air exchange rates were 
computed based on the total house volume and based on the total house volume corrected 
for the furniture. These data analyses used the corrected AERs. 
 
RTP Panel:  Williams et al, 2003a, 2003b. In this study particulate matter concentrations 
and daily average AERs were measured at 37 residences in central North Carolina during 
2000 and 2001 (averaging about 23 AER measurements per residence). The residences 
belong to two specific cohorts: a mostly Caucasian, non-smoking group aged at least 50 
years having cardiac defibrillators living in Chapel Hill; a group of non-smoking, African 
Americans aged at least 50 years with controlled hypertension living in a low-to-
moderate SES neighborhood in Raleigh. Data included the daily average outdoor 
temperature, and the number of air conditioner units (either central or room).  Every 
residence had at least one air conditioner unit. 
 
RIOPA:  Meng et al, 2004, Weisel et al, 2004. The Relationship of Indoor, Outdoor, and 
Personal Air (RIOPA) study was undertaken to estimate the impact of outdoor sources of 
air toxics to indoor concentrations and personal exposures. Volatile organic compounds, 
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carbonyls, fine particles and AERs were measured once or twice at 310 non-smoking 
residences from summer 1999 to spring 2001. Measurements were made at residences in 
Elizabeth, NJ, Houston TX, and Los Angeles CA. Residences in California were 
randomly selected. Residences in New Jersey and Texas were preferentially selected to 
be close (< 0.5 km) to sources of air toxics. The AER measurements (generally over 48 
hours) used a PMCH tracer. Data included the daily average outdoor temperature, and the 
presence or absence of central air conditioning, room air conditioning, or a swamp 
(evaporative) cooler. 
 
TEACH:  Chillrud at al, 2004, Kinney et al, 2002, Sax et al, 2004.  The Toxic Exposure 
Assessment, a Columbia/Harvard (TEACH) study was designed to characterize levels of 
and factors influencing exposures to air toxics among high school students living in 
inner-city neighborhoods of New York City and Los Angeles, CA. Volatile organic 
compounds, aldehydes, fine particles, selected trace elements, and AER were measured at 
87 high school student’s residences in New York City and Los Angeles in 1999 and 
2000. Data included the presence or absence of an air conditioner (central or room) and 
hourly outdoor temperatures (which were converted to daily averages for these analyses).  
 
Wilson 1984: Wilson et al, 1986, 1996. In this 1984 study, AER and other data were 
collected at about 600 southern California homes with three seven-day tests (in March 
and July 1984, and January, 1985) for each home. We obtained the data directly from Mr. 
Wilson. The available data consisted of the three seven-day averages, the month, the 
residence zip code, the presence or absence of a central air conditioner, and the presence 
or absence of a window air conditioner. We matched these data by month and zip code to 
the corresponding monthly average temperatures obtained from EPA’s SCRAM website 
as well as from the archives in www.wunderground.com (personal and airport 
meteorological stations).  Residences more than 25 miles away from the nearest available 
meteorological station were excluded from the analysis. For our analyses, the 
city/location was defined by the meteorological station, since grouping the data by zip 
code would not have produced sufficient data for most of the zip codes.  
 
Wilson 1991: Wilson et al, 1996. Colome et al, 1993, 1994. In this 1991 study, AER and 
other data were collected at about 300 California homes with one two-day test in the 
winter for each home. We obtained the data directly from Mr. Wilson. The available data 
consisted of the two-day averages, the date, city name, the residence zip code, the 
presence or absence of a central air conditioner, the presence or absence of a swamp 
(evaporative) cooler, and the presence or absence of a window air conditioner . We 
matched these data by date, city, and zip code to the corresponding daily average 
temperatures obtained from EPA’s SCRAM website as well as from the archives in 
www.wunderground.com (personal and airport meteorological stations).  Residences 
more than 25 miles away from the nearest available meteorological station were excluded 
from the analysis. For our analyses, the city/location was defined by the meteorological 
station, since grouping the data by zip code would not have produced sufficient data for 
most of the zip codes. 
  
Murray and Burmaster: Murray and Burmaster (1995). For this article, Murray and 
Burmaster corrected and compiled nationwide residential AER data from several studies 
conducted between 1982 and 1987. These data were originally compiled by the Lawrence 
Berkeley National Laboratory. We acknowledge Mr. Murray’s assistance in obtaining 
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these data for us. The available data consisted of AER measurements, dates, cities, and 
degree-days. Information on air conditioner presence or absence was not available. 

 
Table 1 summarizes these studies. 
 
For each of the studies, air conditioner usage, window status (open or closed), and fan status (on 
or off) was not part of the experimental design, although some of these studies included 
information on whether air conditioners or fans were used (and for how long) and whether 
windows were closed during the AER measurements (and for how long). 
 
As described above, in the following studies the homes were deliberately sampled from specific 
subsets of the population at a given location rather than the entire population: The RTP Panel 
study selected two specific cohorts of older subjects with specific diseases. The RIOPA study 
was biased towards residences near air toxics sources. The TEACH study focused on inner-city 
neighborhoods. Nevertheless, we included all these studies because we determined that any 
potential bias would be likely to be small and we preferred to keep as much data as possible. 



 

 

Table 1.  Summary of Studies of Residential Air Exchange Rates 
 

Study Avol RTP Panel RIOPA TEACH Wilson 1984 Wilson 1991 
Murray and 
Burmaster 

Locations Studied 

Lancaster, Lake 
Gregory, 
Riverside, San 
Dimas. All in 
Southern CA 

Research Triangle 
Park, NC CA; NJ; TX 

Los Angeles, CA; 
New York City, NY Southern CA Southern CA 

AZ, CA, CO, 
CT, FL, ID, 
MD, MN, MT, 
NJ 

Years Studied 1994 2000; 2001 1999; 2000; 2001 1999; 2000 1984, 1985 1984 1982 – 1987 

Months/ Seasons 
Studied 

Feb; Mar; Apr; 
May; Jun; Jul; 
Aug; Sep; Oct; 
Nov 

2000 (Jun; Jul; 
Aug; Sep; Oct; 
Nov), 2001 (Jan; 
Feb; Apr; May)  

1999 (July to 
Dec); 2000 (all 
months); 2001 
(Jan and Feb) 

1999 (Feb; Mar; Apr; 
Jul; Aug);   2000 (Jan; 
Feb; Mar; Sep; Oct) 

Mar 1984, Jul 1984, Jan 
1985 Jan, Mar, Jul Various 

Number of Homes 
Studied with 
available AER 
Measurements 86 37 284 85 581 288 1,884 

Total AER 
Measurements 161 854 524 151 1,362 316 2,844 

Average Number 
of AER 
Measurements per 
Home 1.87 23.08 1.85 1.78 2.34 1.10 1.51 

AER Measurement 
Duration Not Available 24 hour 24 to 96 hours 

Sample time (hours) 
reported.  Ranges 
from about 1 to 7 
days. 7 days 7 days Not available 

AER Measurement 
Technique Not Available 

Perflourocarbon 
tracer. PMCH tracer 

Perflourocarbon 
tracer. Perflourocarbon tracer. Perflourocarbon tracer. Not available 

Min AER Value 0.01 0.02 0.08 0.12 0.03 0.01 0.01 

Max AER Value 2.70 21.44 87.50 8.87 11.77 2.91 11.77 

Mean AER Value 0.80 0.72 1.41 1.71 1.05 0.57 0.76 

Min Temperature 
(C) -0.04 -2.18 -6.82 -1.36 11.00 3.00 Not available 

Max Temperature 
(C) 36.25 30.81 32.50 32.00 28.00 25.00 Not available 
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Study Avol RTP Panel RIOPA TEACH Wilson 1984 Wilson 1991 
Murray and 
Burmaster 

Air Conditioner 
Categories 

No A/C; Central 
or Room A/C; 
Swamp Cooler 
only; Swamp + 
[Central or Room] 

Central or Room 
A/C (Y/N) 

Window A/C 
(Y/N); Evap 
Coolers (Y/N)  

Central or Room A/C 
(Y/N) 

Central A/C (Y/N); 
Room A/C (Y/N);  

Central A/C (Y/N); 
Room A/C (Y/N); 
Swamp Cooler(Y/N) Not available 

Air Conditioner 
Measurements 
Made 

A/C use in 
minutes Not Available 

Duration 
measurements in 
Hrs and Mins Not Available Not Available Not Available Not available 

Fan Categories Not available Fan (Y/N)  Fan (Y/N)  Not Available Not Available Not Available Not available 

Fan Measurements 
Made 

Time on or off for 
various fan types 
during sampling 
was recorded, but 
not included in 
database provided. Not Available 

Duration 
measurements in 
Hrs and Mins Not Available Not Available Not Available Not available 

Window Open/ 
Closed Data 

Duration open 
between times 
6am-12 pm; 12pm 
- 6 pm; and 6pm - 
6am 

Windows (open / 
closed along with 
duration open in 
inch-hours units 

Windows (Open / 
Closed) along with 
window open 
duration 
measurements Not Available Not Available Not Available Not available 

Comments   

CA sample was a 
random sample of 
homes. NJ and TX 
homes were 
deliberately 
chosen to be near 
to ambient 
sources. 

Restricted to inner-
city homes with high 
school students. 

Contemporaneous 
temperature data 
obtained for these 
analyses from SCRAM 
and 
www.wunderground.com 
meteorological data. 

Contemporaneous 
temperature data 
obtained for these 
analyses from SCRAM 
and 
www.wunderground.com 
meteorological data.  
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We compiled the data from these seven studies to create the following variables, of which some 
had missing values: 
 

• Study 
• Date  
• Time – Time of the day that the AER measurement was made 
• House_ID – Residence identifier 
• Measurement_ID – Uniquely identifies each AER measurement for a given study 
• AER – Air Exchange Rate (per hour)  
• AER_Duration – Length of AER measurement period 
• Have_AC – Indicates if the residence has any type of air conditioner (A/C), either a room 

A/C or central A/C or swamp cooler or any of them in combination. “Y” = “Yes.” “N” = 
“No.” 

• Type_of_AC1 – Indicates the types of A/C or swamp cooler available in each house 
measured. Possible values:  “Central A/C” “Central and Room A/C” “Central or Room 
A/C” “No A/C” “Swamp + (Central or Room)” “Swamp Cooler only” “Window A/C” 
“Window and Evap” 

• Type_of_AC2 – Indicates if a house measured has either no A/C or some A/C. Possible 
values are “No A/C” and “Central or Room A/C.”  

• Have_Fan – Indicates if the house studied has any fans 
• Mean_Temp – Daily average outside temperature 
• Min_Temp – Minimum hourly outside temperature 
• Max_Temp – Maximum hourly outside temperature 
• State 
• City 
• Location – Two character abbreviation 
• Flag – Data status. Murray and Burmaster study:  “Used” or “Not Used.”  Other studies: 

“Used”; “Missing” (missing values for AER, Type_of_AC2, and/or Mean_Temp); 
“Outlier”. 

 
 

The main data analysis was based on the first six studies. The Murray and Burmaster data were 
excluded because of the absence of information on air conditioner presence. (However, a subset 
of these data was used for a supplementary analysis described below.) .  
 
Based on our review of the AER data we excluded seven outlying high AER values – above 10 
per hour.  The main data analysis used all the remaining data that had non-missing values for 
AER, Type_of_AC2, and Mean_Temp. We decided to base the A/C type variable on the broad 
characterization “No A/C” versus “Central or Room A/C” since this variable could be calculated 
from all of the studies (excluding Murray and Burmaster). Information on the presence or 
absence of swamp coolers was not available from all the studies, and, also importantly, the 
corresponding information on swamp cooler prevalence for the subsequent ozone modeling cities 
was not available from the American Housing Survey. It is plausible that AER distributions 
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depend upon the presence or absence of a swamp cooler. It is also plausible that AER 
distributions also depend upon whether the residence specifically has a central A/C, room or 
window A/C, or both. However we determined to use the broader A/C type definition, which in 
effect assumes that the exact A/C type and the presence of a swamp cooler are approximately 
proportionately represented in the surveyed residences. 
 
Most of the studies had more than one AER measurement for the same house. It is reasonable to 
assume that the AER varies with the house as well as other factors such as the temperature. (The 
A/C type can be assumed to be the same for each measurement of the same house). We expected 
the temperature to be an important factor since the AER will be affected by the use of the 
available ventilation (air conditioners, windows, fans), which in turn will depend upon the 
outside meteorology. Therefore it is not appropriate to average data for the same house under 
different conditions, which might have been one way to account for dependence between 
multiple measurements on the same house. To simplify the data analysis, we chose to ignore 
possible dependence between measurements on the same house on different days and treat all the 
AER values as if they were statistically independent. 
 
Summary Statistics. We computed summary statistics for AER and its natural logarithm 
LOG_AER on selected strata defined from the study, city, A/C type, and mean temperature. 
Cities were defined as in the original databases, except that for Los Angeles we combined all the 
data in the Los Angeles ozone modeling region, i.e. the counties of Los Angeles, Orange, 
Ventura, Riverside, and San Bernardino. A/C type was defined from the Type_of_AC2 variable, 
which we abbreviated as “NA” = “No A/C” and “AC” = “Central or Room A/C.”  The mean 
temperature was grouped into the following temperature bins: -10 to 0 ºC, 0 to 10 ºC, 10 to 20 
ºC, 20 to 25 ºC, 25 to 30 ºC, 30 to 40 ºC.(Values equal to the lower bounds are excluded from 
each interval.)  Also included were strata defined by study = “All” and/or city = “All,” and/or 
A/C type = “All” and/or temperature bin = “All.”  The following summary statistics for AER and 
LOG_AER were computed: 
 

• Number of values 
• Arithmetic Mean 
• Arithmetic Standard Deviation 
• Arithmetic Variance 
• Deciles (Min, 10th, 20th … 90th percentiles, Max) 

 
These calculations exclude all seven outliers and results are not used for strata with 10 or fewer 
values, since those summary statistics are extremely unreliable. 
 
Examination of these summary tables clearly demonstrates that the AER distributions vary 
greatly across cities and A/C types and temperatures, so that the selected AER distributions for 
the modeled cities should also depend upon the city, A/C type and temperature. For example, the 
mean AER for residences with A/C ranges from 0.39 for Los Angeles between 30 and 40 ºC to 
1.73 for New York between 20 and 25 ºC. The mean AER for residences without A/C ranges 
from 0.46 for San Francisco between 10 and 20 ºC to 2.29 for New York between 20 and 25 ºC. 
The need to account for the city as well as the A/C type and temperature is illustrated by the 
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result that for residences with A/C and between 20 and 25 ºC, the mean AER ranges from 0.52 
for Research Triangle Park to 1.73 for New York. Statistical comparisons are described below. 
 
Statistical Comparisons.  Various statistical comparisons were carried out between the different 
strata, for the AER and its logarithm. The various strata are defined as in the Summary Statistics 
section, excluding the “All” cases. For each analysis, we fixed one or two of the variables Study, 
City, A/C type, temperature, and tested for statistically significant differences among other 
variables. The comparisons are listed in Table 2. 
 
Table 2.  Summary of Comparisons of Means 
 

Cases with significantly 
different means (5 % 
level) 

Comparison 
Analysis 
Number. 

Comparison 
Variable(s) 
“Groups 
Compared”  

Stratification 
Variable(s) 
(not missing in 
worksheet) 

Total 
Comparisons

AER Log AER 
1. City Type of A/C AND 

Temp. Range 
12 8 8 

2. Temp. Range Study AND City 12 5 5 
3. Type of A/C Study AND City 15 5 5 
4. City Type of A/C 2 2 2 
5. City Temp. Range 6 5 6 
6. Type of A/C 

AND Temp. 
Range 

Study AND City 17 6 6 

 
For example, the first set of comparisons fix the Type of A/C and the temperature range; there 
are twelve such combinations. For each of these twelve combinations, we compare the AER 
distributions across different cities. This analysis determines whether the AER distribution is 
appropriately defined by the A/C type and temperature range, without specifying the city. 
Similarly, for the sixth set of comparisons, the study and city are held fixed (17 combinations) 
and in each case we compare AER distributions across groups defined by the combination of the 
A/C type and the temperature range. 
 
The F Statistic comparisons compare the mean values between groups using a one way analysis 
of variance (ANOVA). This test assumes that the AER or log(AER) values are normally 
distributed with a mean that may vary with the comparison variable(s) and a constant variance. 
We calculated the F Statistic and its P-value. P-values above 0.05 indicate cases where all the 
group means are not statistically significantly different at the 5 percent level. Those results are 
summarized in the last two columns of the above table “Summary of Comparisons of Means” 
which gives the number of cases where the means are significantly different. Comparison 
analyses 2, 3, and 6 show that for a given study and city, slightly less than half of the 
comparisons show significant differences in the means across temperature ranges, A/C types, or 
both. Comparison analyses 1, 4, and 5 show that for the majority of cases, means vary 
significantly across cities, whether you first stratify by temperature range, A/C type, or both. 
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The Kruskal-Wallis Statistic comparisons are non-parametric tests that are extensions of the 
more familiar Wilcoxon tests to two or more groups. The analysis is valid if the AER minus the 
group median has the same distribution for each group, and tests whether the group medians are 
equal. (The test is also consistent under weaker assumptions against more general alternatives) 
The P-values show similar patterns to the parametric F test comparisons of the means. Since the 
logarithm is a strictly increasing function and the test is non-parametric, the Kruskal-Wallis tests 
give identical results for AER and Log (AER). 
 
The Mood Statistic comparisons are non-parametric tests that compare the scale statistics for two 
or more groups. The scale statistic measures variation about the central value, which is a non-
parametric generalization of the standard deviation. Specifically, suppose there is a total of N 
AER or log(AER) values, summing across all the groups. These N values are ranked from 1 to 
N, and the j’th highest value is given a score of  {j - (N+1)/2}2.  The Mood statistic uses a one 
way ANOVA statistic to compare the total scores for each group. Generally, the Mood statistics 
show that in most cases the scale statistics are not statistically significantly different. Since the 
logarithm is a strictly increasing function and the test is non-parametric, the Mood tests give 
identical results for AER and Log (AER). 
 
Fitting Distributions.  Based on the summary statistics and the statistical comparisons, the need 
to fit different AER distributions to each combination of A/C type, city, and temperature is 
apparent. For each combination with a minimum of 11 AER values, we fitted and compared 
exponential, log-normal, normal, and Weibull distributions to the AER values. 
 
The first analysis used the same stratifications as in the above “Summary Statistics” and 
“Statistical Comparisons” sections. Results are not reported for all strata because of the 
minimum data requirement of 11 values. Results for each combination of A/C type, city, and 
temperature (i.e., A, C, and T) were analyzed. Each combination has four rows, one for each 
fitted distribution. For each distribution we report the fitted parameters (mean, standard 
deviation, scale, shape) and the p-value for three standard goodness-of-fit tests: Kolmogorov-
Smirnov (K-S), Cramer-Von-Mises (C-M), Anderson-Darling (A-D). Each goodness-of-fit test 
compares the empirical distribution of the AER values to the fitted distribution. The K-S and C-
M tests are different tests examining the overall fit, while the Anderson-Darling test gives more 
weight to the fit in the tails of the distribution. For each combination, the best-fitting of the four 
distributions has the highest p-value and is marked by an x in the final three columns. The mean 
and standard deviation (Std_Dev) are the values for the fitted distribution. The scale and shape 
parameters are defined by: 
   

• Exponential: density = σ-1 exp(-x/σ), where shape = mean = σ 
• Log-normal: density = {σx√(2π)}-1 exp{ -(log x - ζ)2 / (2σ2)}, where shape = σ and 

scale = ζ. Thus the geometric mean and geometric standard deviation are given by 
exp(ζ) and exp(σ), respectively. 

• Normal: density = {σ√(2π)}-1 exp{ -(x - μ)2 / (2σ2)}, where mean = μ and standard 
deviation = σ 

• Weibull: density = (c/σ) (x/σ)c-1 exp{-(x/σ)c}, where shape = c and scale = σ 
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Generally, the log-normal distribution was the best-fitting of the four distributions, and so, for 
consistency, we recommend using the fitted log-normal distributions for all the cases. 
 
One limitation of the initial analysis was that distributions were available only for selected cities, 
and yet the summary statistics and comparisons demonstrate that the AER distributions depend 
upon the city as well as the temperature range and A/C type. As one option to address this issue, 
we considered modeling cities for which distributions were not available by using the AER 
distributions across all cities and dates for a given temperature range and A/C type. 
 
Another important limitation of the initial analysis was that distributions were not fitted to all of 
the temperature ranges due to inadequate data. There are missing values between temperature 
ranges, and the temperature ranges are all bounded. To address this issue, the temperature ranges 
were regrouped to cover the entire range of temperatures from minus to plus infinity, although 
obviously the available data to fit these ranges have finite temperatures. Stratifying by A/C type, 
city, and the new temperature ranges produces results for four cities: Houston (AC and NA); Los 
Angeles (AC and NA); New York (AC and NA); Research Triangle Park (AC). For each of the 
fitted distributions we created histograms to compare the fitted distributions with the empirical 
distributions. 
 
 
AER Distributions for The First Nine Cities.  Based upon the results for the above four cities 
and the corresponding graphs, we propose using those fitted distributions for the three cities 
Houston, Los Angeles, and New York. For another 6 of the cities to be modeled, we propose 
using the distribution for one of the four cities thought to have similar characteristics to the city 
to be modeled with respect to factors that might influence AERs. These factors include the age 
composition of housing stock, construction methods, and other meteorological variables not 
explicitly treated in the analysis, such as humidity and wind speed patterns. The distributions 
proposed for these cities are as follows: 
 

• Atlanta, GA, A/C: Use log-normal distributions for Research Triangle Park. Residences 
with A/C only. 

• Boston, MA: Use log-normal distributions for New York 
• Chicago, IL: Use log-normal distributions for New York 
• Cleveland, OH: Use log-normal distributions for New York 
• Detroit, MI: Use log-normal distributions for New York 
• Houston, TX: Use log-normal distributions for Houston 
• Los Angeles, CA: Use log-normal distributions for Los Angeles 
• New York, NY: Use log-normal distributions for New York 
• Philadelphia, PA: Use log-normal distributions for New York 

 
Since the AER data for Research Triangle Park was only available for residences with air 
conditioning, AER distributions for Atlanta residences without air conditioning are discussed 
below.  
 
To avoid unusually extreme simulated AER values, we propose to set a minimum AER value of 
0.01 and a maximum AER value of 10. 
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Obviously, we would be prefer to model each city using data from the same city, but this 
approach was chosen as a reasonable alternative, given the available AER data.  
 
AER Distributions for Sacramento and St. Louis. For these two cities, a direct mapping to one 
of the four cities Houston, Los Angeles, New York, and Research Triangle Park is not 
recommended because the cities are likely to be too dissimilar. Instead, we decided to use the 
distribution for the inland parts of Los Angeles to represent Sacramento and to use the aggregate 
distributions for all cities outside of California to represent St. Louis. The results for the city 
Sacramento were obtained by combining all the available AER data for Sacramento, Riverside, 
and San Bernardino counties. The results for the city St. Louis were obtained by combining all 
non-California AER data. 
 
AER Distributions for Washington DC. Washington DC was judged likely to have similar 
characteristics both to Research Triangle Park and to New York City. To choose between these 
two cities, we compared the Murray and Burmaster AER data for Maryland with AER data from 
each of those cities. The Murray and Burmaster study included AER data for Baltimore and for 
Gaithersburg and Rockville, primarily collected in March. April, and May 1987, although there 
is no information on mean daily temperatures or A/C type. We collected all the March, April, 
and May AER data for Research Triangle Park and for New York City, and compared those 
distributions with the Murray and Burmaster Maryland data for the same three months. 
     
The results for the means and central values show significant differences at the 5 percent level 
between the New York and Maryland distributions. Between Research Triangle Park and 
Maryland, the central values and the mean AER values are not statistically significantly 
different, and the differences in the mean log (AER) values are much less statistically significant 
than between New York and Maryland. The scale statistic comparisons are not statistically 
significantly different between New York and Maryland, but were statistically significantly 
different between Research Triangle Park and Maryland. Since matching central and mean 
values is generally more important than matching the scales, we propose to model Washington 
DC residences with air conditioning using the Research Triangle Park distributions, stratified by 
temperature: 
 

• Washington DC, A/C: Use log-normal distributions for Research Triangle Park. 
Residences with A/C only. 

 
Since the AER data for Research Triangle Park was only available for residences with air 
conditioning, the estimated AER distributions for Washington DC residences without air 
conditioning are discussed below. 
 
AER Distributions for Washington DC and Atlanta GA Residences With No A/C. For 
Atlanta and Washington DC we have proposed to use the AER distributions for Research 
Triangle Park. However, all the Research Triangle Park data (from the RTP Panel study) were 
from houses with air conditioning, so there are no available distributions for the “No A/C” cases.  
For these two cities, one option is to use AER distributions fitted to all the study data for 
residences without A/C, stratified by temperature. We propose applying the “No A/C” 
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distributions for modeling these two cities for residences without A/C. However, since Atlanta 
and Washington DC residences are expected to be better represented by residences outside of 
California, we instead propose to use the “No A/C” AER distributions aggregated across cities 
outside of California, which is the same as the recommended choice for the St. Louis “No A/C” 
AER distributions. 
 
A/C Type and Temperature Distributions. Since the proposed AER distribution is conditional 
on the A/C type and temperature range, these values also need to be simulated using APEX in 
order to select the appropriate AER distribution. Mean daily temperatures are one of the 
available APEX inputs for each modeled city, so that the temperature range can be determined 
for each modeled day according to the mean daily temperature. To simulate the A/C type, we 
obtained estimates of A/C prevalence from the American Housing Survey. Thus for each 
city/metropolitan area, we obtained the estimated fraction of residences with Central or Room 
A/C (see Table 3), which gives the probability p for selecting the A/C type “Central or Room 
A/C.”  Obviously, 1-p is the probability for “No A/C.” For comparison with Washington DC and 
Atlanta, we have included the A/C type percentage for Charlotte, NC (representing Research 
Triangle Park, NC). As discussed above, we propose modeling the 96-97 % of Washington DC 
and Atlanta residences with A/C using the Research Triangle Park AER distributions, and 
modeling the 3-4 % of Washington DC and Atlanta residences without A/C using the combined 
study No A/C AER distributions. 
 
Table 3. Fraction of residences with central or room A/C (from American Housing Survey) 
  
CITY SURVEY AREA & YEAR PERCENTAGE 
Atlanta Atlanta, 2003 97.01 
Boston Boston, 2003 85.23 
Chicago Chicago, 2003 87.09 
Cleveland Cleveland, 2003 74.64 
Detroit Detroit, 2003 81.41 
Houston Houston, 2003 98.70 
Los Angeles Los Angeles, 2003 55.05 
New York New York, 2003 81.57 
Philadelphia Philadelphia, 2003 90.61 
Sacramento Sacramento, 2003 94.63 
St. Louis St. Louis, 2003 95.53 
Washington DC Washington DC, 2003 96.47 
Research Triangle Park Charlotte, 2002 96.56  
 
 
Other AER Studies 
 
We recently became aware of some additional residential and non-residential AER studies that 
might provide additional information or data. Indoor / outdoor ozone and PAN distributions were 
studied by Jakobi and Fabian (1997). Liu et al (1995) studied residential ozone and AER 
distributions in Toronto, Canada. Weschler and Shields (2000) describes a modeling study of 
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ventilation and air exchange rates. Weschler (2000) includes a useful overview of residential and 
non-residential AER studies. 
 
AER Distributions for Other Indoor Environments 
 
To estimate AER distributions for non-residential, indoor environments (e.g., offices and 
schools), we obtained and analyzed two AER data sets: “Turk” (Turk et al, 1989); and “Persily” 
(Persily and Gorfain 2004; Persily et al. 2005).   
 
The earlier “Turk” data set (Turk et al, 1989) includes 40 AER measurements from offices (25 
values), schools (7 values), libraries (3 values), and multi-purpose (5 values), each measured 
using an SF6 tracer over two- or four-hours in different seasons of the year.  
 
The more recent  “Persily” data (Persily and Gorfain 2004; Persily et al. 2005) were derived 
from the U.S. EPA Building Assessment Survey and Evaluation (BASE) study, which was 
conducted to assess indoor air quality, including ventilation, in a large number of randomly 
selected office buildings throughout the U.S. The data base consists of a total of 390 AER 
measurements in 96 large, mechanically ventilated offices; each office was measured up to four 
times over two days, Wednesday and Thursday AM and PM. The office spaces were relatively 
large, with at least 25 occupants, and preferably 50 to 60 occupants. AERs were measured both 
by a volumetric method and by a CO2 ratio method, and included their uncertainty estimates. For 
these analyses, we used the recommended “Best Estimates” defined by the values with the lower 
estimated uncertainty; in the vast majority of cases the best estimate was from the volumetric 
method. 
 
Another study of non-residential AERs was performed by Lagus Applied Technology (1995) 
using a tracer gas method. That study was a survey of AERs in 16 small office buildings, 6 large 
office buildings, 13 retail establishments, and 14 schools. We plan to obtain and analyze these 
data and compare those results with the Turk and Persily studies. 
 
Due to the small sample size of the Turk data, the data were analyzed without stratification by 
building type and/or season. For the Persily data, the AER values for each office space were 
averaged, rather using the individual measurements, to account for the strong dependence of the 
AER measurements for the same office space over a relatively short period.   
 
Summary statistics of AER and log (AER) for the two studies are presented in Table 4. 
 
Table 4.  AER summary statistics for offices and other non-residential buildings 
 
Study Variable N Mean Std Dev Min 25th %ile Median 75th %ile Max 
Persily AER 96 1.9616 2.3252 0.0712 0.5009 1.0795 2.7557 13.8237
Turk AER 40 1.5400 0.8808 0.3000 0.8500 1.5000 2.0500 4.1000
Persily Log(AER) 96 0.1038 1.1036 -2.6417 -0.6936 0.0765 1.0121 2.6264
Turk Log(AER) 40 0.2544 0.6390 -1.2040 -0.1643 0.4055 0.7152 1.4110
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The mean values are similar for the two studies, but the standard deviations are about twice as 
high for the Persily data. The proposed AER distributions were derived from the more recent 
Persily data only. 
 
Similarly to the analyses of the residential AER distributions, we fitted exponential, log-normal, 
normal, and Weibull distributions to the 96 office space average AER values. The results are 
shown in Table 5. 
 
Table 5. Best fitting office AER distributions from the Persily et al. (2004, 2005)   
 

Scale Shape Mean Std_Dev Distribution

P-Value 
Kolmogorov-

Smirnov 

P-Value 
Cramer-

von 
Mises 

P-Value 
Anderson-

Darling 
1.9616  1.9616 1.9616 Exponential 0.13 0.04 0.05
0.1038 1.1036 2.0397 3.1469 Lognormal 0.15 0.46 0.47

  1.9616 2.3252 Normal 0.01 0.01 0.01
1.9197 0.9579 1.9568 2.0433 Weibull  0.01 0.01

 
(For an explanation of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling P-
values see the discussion residential AER distributions above.) According to all three goodness-
of-fit measures the best-fitting distribution is the log-normal. Reasonable choices for the lower 
and upper bounds are the observed minimum and maximum AER values. 
 
We therefore propose the following indoor, non-residential AER distributions. 
 

• AER distribution for indoor, non-residential microenvironments: Lognormal, with scale 
and shape parameters 0.1038 and 1.1036, i.e., geometric mean = 1.1094, geometric 
standard deviation = 3.0150. Lower Bound = 0.07. Upper bound = 13.8.  

 
Proximity and Penetration Factors For Outdoors, In-vehicle, and Mass Transit 
 
For the APEX modeling of the outdoor, in-vehicle, and mass transit micro-environments, an 
approach using proximity and penetration factors is proposed, as follows. 
 
Outdoors Near Road 
 
Penetration factor = 1. 
 
For the Proximity factor, we propose using ratio distributions developed from the Cincinnati 
Ozone Study (American Petroleum Institute, 1997, Appendix B; Johnson et al. 1995). The field 
study was conducted in the greater Cincinnati metropolitan area in August and September, 1994. 
Vehicle tests were conducted according to an experimental design specifying the vehicle type, 
road type, vehicle speed, and ventilation mode. Vehicle types were defined by the three study 
vehicles: a minivan, a full-size car, and a compact car. Road types were interstate highways 
(interstate), principal urban arterial roads (urban), and local roads (local). Nominal vehicle 
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speeds (typically met over one minute intervals within 5 mph) were at 35 mph, 45 mph, or 55 
mph. Ventilation modes were as follows: 
 

• Vent Open:  Air conditioner off. Ventilation fan at medium. Driver’s window half open. 
Other windows closed. 

• Normal A/C. Air conditioner at normal. All windows closed. 
• Max A/C: Air conditioner at maximum. All windows closed. 

 
Ozone concentrations were measured inside the vehicle, outside the vehicle, and at six fixed site 
monitors in the Cincinnati area. 
 
The proximity factor can be estimated from the distributions of the ratios of the outside-vehicle 
ozone concentrations to the fixed-site ozone concentrations, reported in Table 8 of Johnson et al. 
(1995). Ratio distributions were computed by road type (local, urban, interstate, all) and by the 
fixed-site monitor (each of the six sites, as well as the nearest monitor to the test location). For 
this analysis we propose to use the ratios of outside-vehicle concentrations to the concentrations 
at the nearest fixed site monitor, as shown in Table 6. 
 
Table 6. Ratio of outside-vehicle ozone to ozone at nearest fixed site1 
 
 
Road 
Type1 

Number 
of cases1 

Mean1 Standard 
Deviation1

25th 
Percentile1

50th 
Percentile1

75th 
Percentile1 

Estimated 
5th 
Percentile2

Local 191 0.755 0.203 0.645 0.742 0.911 0.422 
Urban 299 0.754 0.243 0.585 0.722 0.896 0.355 
Interstate 241 0.364 0.165 0.232 0.369 0.484 0.093 
All 731 0.626 0.278 0.417 0.623 0.808 0.170 
  

1. From Table 8 of Johnson et al. (1995). Data excluded if fixed-site concentration  < 40 
ppb. 

2. Estimated using a normal approximation as Mean – 1.64 × Standard Deviation 
 
For the outdoors-near- road microenvironment, we recommend using the distribution for local 
roads, since most of the outdoors-near-road ozone exposure will occur on local roads. The 
summary data from the Cincinnati Ozone Study are too limited to allow fitting of distributions, 
but the 25th and 75th percentiles appear to be approximately equidistant from the median (50th 
percentile). Therefore we propose using a normal distribution with the observed mean and 
standard deviation. A plausible upper bound for the proximity factor equals 1. Although the 
normal distribution allows small positive values and can even produce impossible, negative 
values (with a very low probability), the titration of ozone concentrations near a road is limited. 
Therefore, as an empirical approach, we recommend  a lower bound of the estimated 5th 
percentile, as shown in the final column of the above table. Therefore in summary we propose: 
 

• Penetration factor for outdoors, near road: 1. 
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• Proximity factor for outdoors, near road: Normal distribution. Mean = 0.755. Standard 
Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

 
Outdoors, Public Garage / Parking Lot 
 
This micro-environment is similar to the outdoors-near-road microenvironment. We therefore 
recommend the same distributions as for outdoors-near-road: 
 

• Penetration factor for outdoors, public garage / parking lot: 1. 
• Proximity factor for outdoors, public garage / parking lot: Normal distribution. Mean = 

0.755. Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 
 
Outdoors, Other 
 
The outdoors, other ozone concentrations should be well represented by the ambient monitors. 
Therefore we propose: 
 

• Penetration factor for outdoors, other: 1. 
• Proximity factor for outdoors, other: 1. 

 
In-Vehicle 
 
For the proximity factor for in-vehicle, we also recommend using the results of the Cincinnati 
Ozone Study presented in Table 6. For this microenvironment, the ratios depend upon the road 
type, and the relative prevalences of the road types can be estimated by the proportions of 
vehicle miles traveled in each city. The proximity factors are assumed, as before, to be normally 
distributed, the upper bound to be 1, and the lower bound to be the estimated 5th percentile. 
 

• Proximity factor for in-vehicle, local roads: Normal distribution. Mean = 0.755. Standard 
Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

• Proximity factor for in-vehicle, urban roads: Normal distribution. Mean = 0.754. 
Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1. 

• Proximity factor for in-vehicle, interstates: Normal distribution. Mean = 0.364. Standard 
Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1. 

 
To complete the specification, the distribution of road type needs to be estimated for each city to 
be modeled. Vehicle miles traveled (VMT) in 2003 by city (defined by the Federal-Aid 
urbanized area) and road type were obtained from the Federal Highway Administration. 
(http://www.fhwa.dot.gov/policy/ohim/hs03/htm/hm71.htm). For  local and interstate road types, 
the VMT for the same DOT categories were used. For urban roads, the VMT for all other road 
types was summed (Other freeways/expressways, Other principal arterial, Minor arterial, 
Collector). The computed VMT ratios for each city are shown in Table 7. 
 
Table 7. Vehicle Miles Traveled by City and Road Type in 2003 (FHWA, October 2004) 
 
  FRACTION VMT BY ROAD TYPE 
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FEDERAL-AID URBANIZED 
AREA INTERSTATE URBAN LOCAL 

Atlanta 0.38 0.45 0.18 
Boston 0.31 0.55 0.14 
Chicago 0.30 0.59 0.12 
Cleveland 0.39 0.45 0.16 
Detroit 0.26 0.63 0.11 
Houston 0.24 0.72 0.04 
Los Angeles 0.29 0.65 0.06 
New York 0.18 0.67 0.15 
Philadelphia 0.23 0.65 0.11 
Sacramento 0.21 0.69 0.09 
St. Louis 0.36 0.45 0.19 
Washington 0.31 0.61 0.08 

Note that a “Federal-Aid Urbanized Area" is an area with 50,000 or more persons that at a 
minimum encompasses the land area delineated as the urbanized area by the Bureau of the 
Census. Urbanized areas which have been combined with others for reporting purposes are not 
shown separately. The Illinois portion of Round Lake Beach-McHenry-Grayslake has been 
reported with Chicago. 
  
Thus to simulate the proximity factor in APEX, we propose to first select the road type according 
to the above probability table of road types, then select the AER distribution (normal) for that 
road type as defined in the last set of bullets. 
 
For the penetration factor for in-vehicle, we recommend using the inside-vehicle to outside-
vehicle ratios from the Cincinnati Ozone Study. The ratio distributions were summarized for all 
the data and for stratifications by vehicle type, vehicle speed, road type, traffic (light, moderate, 
or heavy), and ventilation. The overall results and results by ventilation type are shown in Table 
8. 
 
Table 8. Ratio of inside-vehicle ozone to outside-vehicle ozone1 
 
 
Ventilation1 Number 

of 
cases1 

Mean1 Standard 
Deviation1

25th 
Percentile1

50th 
Percentile1

75th 
Percentile1 

Estimated 
5th 
Percentile2

Vent Open 226 0.361 0.217 0.199 0.307 0.519 0.005 
Normal 
A/C 

332 0.417 0.211 0.236 0.408 0.585 0.071 

Maximum 
A/C 

254 0.093 0.088 0.016 0.071 0.149 0.0003 

All 812 0.300 0.232 0.117 0.251 0.463 0.0003 
  

1. From Table 7 of Johnson et al.(1995). Data excluded if outside-vehicle concentration  < 
20 ppb. 

2. Estimated using a normal approximation as Mean – 1.64 × Standard Deviation 
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3. Negative estimate (impossible value) replaced by zero. 
 

Although the data in Table 8 indicate that the inside-to-outside ozone ratios  strongly depend 
upon the ventilation type, it would be very difficult to find suitable data to estimate the 
ventilation type distributions for each modeled city. Furthermore, since the Cincinnati Ozone 
Study was scripted, the ventilation conditions may not represent real-world vehicle ventilation 
scenarios. Therefore, we propose to use the overall average distributions. 
 

• Penetration factor for in-vehicle: Normal distribution. Mean = 0.300. Standard Deviation 
= 0.232. Lower Bound = 0.000. Upper Bound = 1. 

 
Mass Transit 
 
The mass transit microenvironment is expected to be similar to the in-vehicle microenvironment. 
Therefore we recommend using the same APEX modeling approach: 
 

• Proximity factor for mass transit, local roads: Normal distribution. Mean = 0.755. 
Standard Deviation = 0.203. Lower Bound = 0.422. Upper Bound = 1. 

• Proximity factor for mass transit, urban roads: Normal distribution. Mean = 0.754. 
Standard Deviation = 0.243. Lower Bound = 0.355. Upper Bound = 1. 

• Proximity factor for mass transit, interstates: Normal distribution. Mean = 0.364. 
Standard Deviation = 0.165. Lower Bound = 0.093. Upper Bound = 1. 

• Road type distributions for mass transit: See Table 6 
• Penetration factor for mass transit: Normal distribution. Mean = 0.300. Standard 

Deviation = 0.232. Lower Bound = 0.000. Upper Bound = 1. 
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TECHNICAL MEMORANDUM 
 
 
TO:  Tom McCurdy, U.S. EPA, WA Manager, NERL WA 131 

FROM:   Kristin Isaacs, Graham Glen, and Luther Smith, Alion Science and Technology Inc. 

DATE:  June 16, 2005 

SUBJECT:  Theoretical Development of a Unified Algorithm for Adjusting METS Values 
 in Human Exposure Modeling for Fatigue and EPOC 

 
I.  INTRODUCTION 
 
The CHAD activity database assigns distributions for energy expenditure to each diary event, 
based on the reported event activity.  This is done using the METS paradigm, which uses ratios 
of activity-specific to basal energy expenditure.  However, the basic or “raw” METS 
distributions do not consider sequences of events.  It is well known that a person’s capacity for 
work will diminish as they get tired, and in practice, this means that the upper bound on METS is 
lowered if events in the recent past have been at unusually high METS levels.  Furthermore, once 
high activity levels have ended, people tend to breathe heavily even while resting, as they 
recover their accumulated oxygen deficit.   This effect is called excess post-exercise oxygen 
consumption (EPOC), and results in raising the METS levels above the ‘raw’ values pulled from 
the activity-based distributions.  
 
Historically, the logic for the downward adjustments (downward limitations on the maximum 
METS with increasing fatigue) was developed before the EPOC adjustments.  The pNEM model 
included downward adjustments, both for single events and averages over many diary events.  
The rules for these adjustments are given in a report1 by Ted Johnson describing the pNEM 
algorithms.  These rules were incorporated into CHAD and APEX without alteration.  The rules 
for the EPOC adjustments were developed later by G. Glen and added to CHAD.   They were not 
included in APEX or any of the SHEDS models. 
 
Rather than separately accounting for these effects, it is more logical to make both adjustments 
simultaneously.  This would prevent the possibility of making a downward adjustment so that the  
METS average conforms to a given limit, but then have the EPOC adjustment boost the average 
back above that limit. Also, the current method of making the adjustments is computationally 
burdensome.  For these reasons, we have developed a new approach. 
 
The proposed adjustment algorithm imposes limits on METS via the value of an oxygen deficit 
an individual has incurred.  The method is more computationally efficient than previous METS-
adjustment algorithms, and eliminates some of the problematic features of the current methods.   
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II.  THEORETICAL DEVELOPMENT OF THE METHOD 
 
Background: Oxygen Deficit, Physiological Limits on METS, and EPOC 

At the beginning of exercise, there is a lag between work expended and oxygen consumption.2  
During this work/ventilation mismatch, an individual’s energy needs are met by anaerobic 
processes.  The magnitude of the mismatch between expenditure and consumption is termed the 
oxygen deficit.  During heavy exercise, further oxygen deficit (in addition to that associated with 
the start of exercise) may be accumulated.  At some point, oxygen deficit reaches a maximum 
value, and performance and energy expenditure deteriorate. 
 
After exercise ceases, ventilation and oxygen consumption will remain elevated above baseline 
levels.  This increased oxygen consumption was historically labeled the “oxygen debt” or 
“recovery oxygen consumption.”  However, recently the term “excess post-exercise oxygen 
consumption” (EPOC) has been adopted for the phenomenon. 
 
The new method for adjusting the METS values is based on keeping a running total of the 
oxygen deficit as one proceeds chronologically through an activity diary.  The oxygen deficit 
calculations were derived from numerous published studies.  Oxygen deficit is measured as a 
percentage of the maximum oxygen deficit an individual can attain prior to deterioration of 
performance.  Limitations on METS levels corresponding to post-exercise diary events were 
based on maintaining an oxygen deficit below this maximum value.  In addition, adjustments to 
METS were simultaneously made for EPOC.  The EPOC adjustments are based in part on the 
modeled oxygen deficit and in part on data from published studies on EPOC, oxygen deficit, and 
oxygen consumption. 
 
As instructed by the EPA WAM, the methods were constructed in terms of reserve METS rather 
than total METS.  The reserve is the amount over the basal rate (METS=1).  Furthermore, we 
defined M as the normalized reserve, so that M=0 at METS=1, and M=1 at maximum METS: 
 

1METS
1METSM

max −
−

=                                                           (1) 

 
Using a normalized reserve assures that the method can be applied identically to a population of 
individuals having widely different METSmax values. 
 

Nomenclature 

METS   Metabolic equivalent (unitless) 
METSmax  Maximum achievable metabolic equivalent for an individual (unitless) 
M   Normalized METS reserve (unitless, M, bounded between 0 and 1) 
ΔM   Change in M from one diary event to the next (M) 
Dmax   Absolute maximum oxygen deficit that can be obtained (M-hr) 
F   Fractional oxygen deficit (percent of individual maximum, unitless) 
te   Duration of activity diary event (hours) 
tr  Time required to recover from an F of 1 to an F of 0 at rest (recovery time, hours) 
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dFinc  Rate of change of F due to deficit increase (F/hr, will have a positive value) 
dFrec   Rate of change of F due to deficit recovery (F/hr, will have a negative value) 
dFtot   Total rate of change of F, dFinc+ dFrec (F/hr) 
ΔFinc   Increase in F due to anaerobic energy expenditure (F) 

ΔFrec  Decrease in F due to recovery of oxygen deficit (F) 

ΔFtot   Change in F due to simultaneous anaerobic work and oxygen recovery, 
ΔFinc+ΔFrec (F) 

ΔFfast    Total change in F during the fast recovery phase (F) 
Sfast    Magnitude of the rate of change in M during fast component (M/hr) 
EPOC fast   Change in M due to fast-component EPOC (M) 
EPOCslow   Change in M due to slow-component EPOC (M) 
 
Simulation of Oxygen Deficit 
This section presents the theoretical development of the equations describing the accumulation of 
oxygen deficit.  We developed the method using a large number of studies on oxygen 
consumption, oxygen deficit, and EPOC.  Individual studies will be referenced below.  The first 
two sections below describe the equations themselves, while the last section describes the 
determination of appropriate values for the model parameters. 
 
Fast Processes.  There exists a component of the accumulated oxygen deficit that is due to 
transition from one M level to another.2  This component derives from the anaerobic work that is 
required by sudden muscular motion.  There is also a corresponding fast component of oxygen 
recovery which occurs very quickly after a change from a high M level to a lower one.  In the 
absence of any data to the contrary, it is assumed that these fast deficit accumulation and fast 
recovery processes occur at the same rate.  These processes are illustrated in the Figure 1.  The 
adjustment to F is equal to the area of the triangle associated with either a positive or negative 
change in M, normalized by the maximum obtainable accumulated oxygen deficit (Dmax). The 
normalized area can thus be calculated as: 
 

maxfast
fast DS

ΔMΔM
0.5ΔF =                                                                 (2) 

 
where ΔM = Mi-Mi-1 and Sfast is the slope of the change in M (in M/hr). Note that this change in F 
will be positive if ΔM is positive, and negative otherwise. 
 
Slow Processes.  The slow component of the increase in oxygen deficit corresponds to the 
accumulation of deficit over a period of heavier exercise (rather than that associated with an 
increase in activity level). The starting point for the analyses is the table of data3-15 assembled by 
T. McCurdy for the 1998 and 1999 EPOC work.   Data from a selection of these studies in which 
persons exercised to exhaustion are given in Table 1.  The table includes the time it took for 
subjects to reach exhaustion, their accumulated oxygen deficit, their METSmax, the METS value 
at which they exercised, and the corresponding normalized reserve METS (M). (Note that the 
METS and METSmax quantities in this table were derived from VO2 and VO2max measurements.) 
A plot of M versus duration is shown in Figure 2.  There is one data point having M > 1, for one 
subject who exercised briefly at a level above his/her METSmax.  The data indicate that oxygen 
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deficit accumulates at a much faster rate when M is high.  For example, an M value near 0.5 
requires about 5 times longer to reach exhaustion than an M value near 0.75 (on average), 
indicating that F is nonlinear in M.  
 
Let the rate of increase in F be given by incdF .  Based upon the relationship depicted in Fig. 2, we 
postulate a simple nonlinear relationship between incdF  and M as a power law: 
 

b
inc aMdF =                                                                    (3) 

 
However, before estimating a and b, one must account for slow recovery of oxygen debt, as it 
occurs simultaneously with debt accumulation. We assume a slow, but continual, process for 
recovering oxygen deficit that is independent of the METS level.  For modeling purposes, time-
varying processes are very difficult to handle, especially when using finite time-step models.  In 
our exposure models, the time step may be as large as one hour.  To avoid problems, we model 
the slow EPOC recovery as constant over time, until the oxygen deficit is erased.  Assuming this 
takes tr hours,  the slow recovery of oxygen deficit occurs at a rate  
 

r
rec t

1dF −=                                                                     (4) 

 
The total net rate of change in F from slow processes during an event i with duration te is given 
by 

 
recincslow dFdFdF +=                                                               (5) 

 
and the associated change in F is  
 

e
r

b
islow t

t
1aMΔF ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                                                              (6) 

 
For an individual starting with an F of 0 and exercising to exhaustion (neglecting the transitory 
effects), the change in ΔF is 1.0. In this case, rearranging and taking the logarithm gives 
 

( ) log(M)balog
t
1

t
1log

r

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+                                                    (7) 

 
This equation can be used to fit data to estimate the parameters a and b (this will be discussed in 
the next section).   
 
The starting normalized oxygen deficit for the next event (i +1), taking into account both the fast 
and slow changes in F, is then 
 

Fastslowi1i ΔFΔFFF ++=+                                                      (8) 
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Appropriate values for tr , a, and b. These parameters were derived from summaries of  
published data that were supplied by EPA (i.e., the data in Table 1).  It should be noted that these 
data were collected and analyzed some years ago and should be updated to include any recent 
additions to the literature. As additional data become available, the parameter values estimated 
here may be adjusted without changing the structure of the algorithm.   
 
Several of the studies in Table 1 reported tr values.  However, due to variability in measurement 
and protocol differences, these recovery times varied from 0.5 hours to 24 hours.  From a 
modeling viewpoint, it would be unacceptable to allow recovery to significantly carry over from 
one day to the next. To do so could lead to a perpetual delay in recovering an oxygen deficit, for 
example, by repeatedly encountering new exercise events before recovery is complete.  For the 
results section, we chose tr from a uniform distribution having a minimum of 8 and a maximum 
of 16 hours.  (In practice, the values selected for tr do not affect the result significantly.)  The 
user could replace this distribution, if desired.  
 
Eq. 7  was fit to the data (Table 1) using different values of tr to obtain estimates of a and b.  The 
results are shown in Table 2.  The results were summarized to obtain the following expressions 
for a and b: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

rr t
3.92

t
1.545.20a ,                                                            (9) 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 2

rr t
3.66

t
3.573.93b .                                                          (10) 

 
Values for Dmax. Appropriate distributions for maximum oxygen debt (MOD) in ml/kg were 
derived from data from a number of studies in adults,16-29 adolescents,30 and children.31-32  The 
studies covered multiple types of exercise protocols, some having more than one protocol per 
study. We chose to define normal distributions for MOD in all three age groups, based on 
average mean and standard deviation values from the studies: 
  

 adults:  54.95±14.46 (ml/kg) 
 adolescents: 63.95±21.12 (ml/kg) 
 children:  34.74±13.10 (ml/kg) 
 
Values were selected from normal distributions with these characteristics. The bounds of these 
distributions were selected as two standard deviations from the mean; these ranges were found to 
be reasonable when compared to reported ranges.29  The means for each exercise protocol from 
the studies for all three age groups are shown in the plots in Fig. 3, and the data for all the studies 
are given in the Appendix (A2).  For use in Eq. 2, we transformed these values to Dmax,  via a 
units conversion factor and the normalization needed for use with reserve METS:  
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maxD (M-hr) = ( ) 1
max

2

1METS
METStoO60

MOD −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
                                 (12) 

 
where METStoO2 is the conversion factor2 for mlO2 to METS-min, 3.5 [(mlO2/min)/kg]/MET.  
Note that the variability in this factor is not addressed here. 
 
Values for Sfast. A number of studies on EPOC33-42 were used to derive Sfast.  These were all 
studies in which oxygen consumption was measured relatively soon (within a few minutes) after 
the end of exercise and at a frequency high enough to capture the kinetics of the change in 
oxygen consumption.  The data were found to be relatively uniform from the minimum (0.6 
METS/min) to the maximum (3.7 METS/min) slope values, and so values were selected from a 
uniform distribution having these bounds.  Converting units and normalizing to M, one obtains: 

 

fastS   (M/hr)  =  ( )1METS
3.7)(0.6,Uniform60

max −
                                           (13) 

 

The data for all studies are given in the Appendix (A3). 

 

Adjustments to M for Fatigue 

The equations provided in the previous section describe a method for keeping a running total of 
the fractional oxygen deficit (F) for each diary event for an individual.  We used these event F 
values to limit M for each event to appropriate values.  Basically, the maximum M value that can 
be maintained for an entire event is the value that would result in an Fi+1 (eq. 8) equal to 1 (i.e., 
the maximum value) at the end of the diary event.  Ideally, one would wish to solve Eqs. 2, 6, 
and 8 explicitly for Mi for a value of Fi+1 =1.  However, the equations are non-linear in Mi.  The 
approach used here is to set M for each event equal to the raw METS value, and test if Fi+1>1.  If 
it is, then the Mi value is reduced by a predetermined amount (currently 0.01) and Fi+1 is 
recalculated.  The process continues until an appropriate value of Mi, called Mmax,i, is found.  As 
the exposure model marches through the events of the activity diary, the M values associated 
with each event are adjusted if necessary: 
 

Mi=min(Mi, Mmax, i)                                                            (14) 
 
Adjustments to M for EPOC 
As noted above, it has been observed in many studies that EPOC is characterized by both slow 
and fast components.  The fast component occurs within minutes of exercise, while the slow 
component may persist for many hours.  Both fast and slow EPOC components were modeled. 
 
Fast Processes.  The fast EPOC component, which takes place in the first few minutes after 
exercise, is also characterized by the slope Sfast.   The energy recovered during those first few 
minutes corresponds to the recovery triangle in Fig. 1, and this increase in the rate of energy 
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expenditure for a post-exercise event is modeled as the area of the triangle divided by the event 
duration: 
 

                                                 ( )
efast

2

fast tS
M5.0EPOC Δ

=                                                         (15) 

 
EPOCfast will thus have units of M (normalized reserve METS).  The M level for the post-
exercise events will be incremented by EPOCfast. 
 
Slow Processes.  We estimate the increase in M associated with the slow EPOC component as 
the amount required to maintain the slow recovery of F.  Since a deficit Dmax is recovered in full 
in the recovery time tr, the time-averaged adjustment to METS for the slow recovery process 
must be 
 

EPOCslow=
r

max

t
D

                                                           (16) 

 
Every diary event with the full rate of slow recovery will have its M value adjusted upward by 
EPOCslow.  An appropriate fraction of EPOC slow is used if only partial recovery is needed to 
eliminate the deficit (i.e., return F to 0).  The final adjusted M value for the diary event is thus 
 

slowfastadj EPOCEPOCMM ++=                                          (17) 
 
and the new METS value for the event is  
 

11)(METSMMETS maxadjadj +−=                                          (18) 
 
II. DISCUSSION 
 
Note:  As the main focus of this document was the presentation of the method, only a general 
summary of the modeling results are presented here.  An in-depth analysis of PAI, dose, and 
ventilation modeling results for children within 36 age and gender cohorts were presented in the 
report Analysis of Data Relating to EPOC and Duration-Dependent Limits on METS ( Kristin 
Isaacs and Graham Glen, February 5, 2005).  Though that report utilized an earlier version of 
METS-adjustment, it is likely that the results presented there would not vary greatly from those 
obtained using the method discussed here. The PAI results presented herein demonstrate that the 
new method decreases METS (and thus PAI) a bit more than the earlier method.  However, it is 
expected that this decrease will be fairly uniform across cohorts.  
 
METS Limits for Fatigue 
For periods of constant exercise, Eq. 7 results in a function having a horizontal asymptote.  This 
asymptote is the M level that the individual can sustain indefinitely, and above which oxygen 
deficit accumulates.  At this M, the net change in F is zero because recovery exactly balances the 
increase in F.  A plot of Mmax assuming constant exercise at Mmax and a tr of 12 hours is given in 
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Fig. 4 These results are very close to those predicted by the Bink43 equation (as modified by 
Erb44), which was used in the previous method to limit METS.  This demonstrates that for 
continuous exercise, the limits on intensity predicted by the unified method decline appropriately 
with time. 
 
Existing methods have a tendency to overcorrect METS values for relatively low-activity events 
to fulfill limits on subsequent high-METS events.  By imposing limits on METS via the current 
value of the oxygen deficit, the unified method avoids overcorrection and implements more 
localized adjustments in METS.  For example, consider the case of the 3 year-old whose one, 
four, and nine-hour running METS averages are shown in Fig. 5.  The flat dotted lines represent 
the METS limits predicted by Bink43 for constant exercise at these time intervals.  In Fig. 5 note 
that the new method allows the METS curve to approach the Bink limit without exceeding it, 
whereas overcorrection in the earlier methods prevents METS from even approaching this limit. 
 
The actual adjustments made to METS time series varied greatly.  Much of this variation was 
dependent on individual differences in METSmax.   Three examples for children of different age, 
gender, and METSmax are given in Figure 6. 
 
EPOC 
The adjustments to single-event METS for EPOC when the algorithm was applied to CHAD 
were very small compared to the adjustments made for fatigue.  In general, the increases in 
METS for EPOC were small, usually less than one MET.  In a few cases the adjustments were 
bigger (on the order of 4-6 METS), due to the fact that the adjustments were applied to a very 
short event.  An example of a METS time series with EPOC adjustments is shown in Fig. 7.  

 
As more conclusive data become available, the slow EPOC processes could be modeled in a 
similar manner to the fast component, (i.e., with a slope term). Currently, data on the duration 
and magnitude of the slow EPOC component are inconclusive and vary greatly from study to 
study. However, the change in M for slow EPOC is extremely small, and thus it would be 
expected that a different modeling method for this component would have a negligible effect on 
M (and thus ventilation and dose). 
 
EFFECT ON PAI IN CHILDREN 
 
Mean values of PAI for age and gender cohorts are given in Tables 3 and 4.   In general, the 
unified algorithm resulted in a decreased PAI.  A frequency distribution for PAI  is given in Fig. 
8.  The algorithm shifted the distribution of PAI to the left, with the higher end of the distribution 
being most affected. That is, the unified algorithm mainly adjusted the highest values of PAI. 
  
III.  SUMMARY AND CONCLUSIONS 
 
We have developed a new method for simultaneously correcting METS values for fatigue and 
excess post-exercise oxygen consumption.  The method is based on the calculation of an 
accumulated oxygen deficit.  The method’s equations were derived from data from a large 
number of studies on oxygen deficit and EPOC.  Furthermore, the model variables can be easily 
updated to incorporate data from future studies as they become available. However, the method 
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as presented here returns qualitatively appropriate results for time-dependent averages of METS 
levels for children, though fine tuning of the results might be obtained by updating the model 
parameter estimates using new data. 
 
The new method is more computationally efficient and theoretically straightforward than the 
previous ones. It requires no maintenance of multiple running averages of METS values (as was 
required by the previous algorithm) or recursive nonlinear adjustment of oxygen deficit (as was 
required by the other methods). 
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Table 1. Data used for estimation of oxygen deficit.  Table gives data for 22 subjects exercising 
to exhaustion.  Oxygen deficit was assumed to be 0 at the start of exercise.   
 
 
 

Observation Oxygen Deficit
Time to 

Reach Exhaustion METSMax METS M
(ml/kg) (Hours)

1 153.52 1.00 13.3 9.31 0.67561
2 109.95 1.17 13.8 10.35 0.730469
3 106.43 1.33 13.46 9.57 0.687801
4 93.92 1.27 16.11 11.43 0.690271
5 68.23 0.75 13.3 9.31 0.67561
6 57.86 1.33 19.18 13.426 0.683498
7 57.14 1.33 17.8 12.46 0.682143
8 55.13 0.10 15.51 16.7508 1.085513
9 44.42 0.67 15.86 10.9434 0.669139

10 39.76 0.83 17.8 12.46 0.682143
11 37.08 3.00 19.86 10.30734 0.493496
12 32.88 3.00 17.8 8.9 0.470238
13 31.09 0.58 11.3 9.2773 0.803621
14 29.16 0.40 15.4 12.32 0.786111
15 29 0.50 13.3 9.31 0.67561
16 27.88 0.50 20.95 14.665 0.684962
17 24.87 0.33 17.94 13.1859 0.719357
18 24.27 0.33 15.8 11.85 0.733108
19 21.08 0.75 11.3 7.458 0.62699
20 19.57 0.33 13.8 11.04 0.784375
21 18.32 0.17 18.87 15.30357 0.800424
22 13.72 0.83 7.79 5.53869 0.668437
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Table 2.  Values of a and b for different recovery times. 
 
 

 
 

  d   (hours)   r   a   b   R 2   
8       5.08538   3.54442   0.79008   
9       5.09260   3.58195   0.79121   
10       5.09932   3.61289   0.79216   
11       5.10550   3.63885   0.73296   
12       5.11114   3.66094   0.79364   
13       5.11627   3.67997   0.79423   
14       5.12095   3.69653   0.79475   
15       5.12522   3.71109   0.79520   
16       5.12912   3.72398   0.79561   
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Table 3. Mean PAI Values (Males). Unified algorithm values are for a 50000-person simulation 
(~1400 persons per cohort). 
 

Age CHAD (UNCORRECTED) UNIFIED 
ALGORITHM 

LITERATURE 
VALUE* 

0 1.84 1.59 - 
0.33 - - 1.15 
0.50 - - 1.23 
0.75 - - 1.34 

1 1.83 1.58 1.32 
2 1.89 1.59 1.38 
3 1.88 1.62 - 
4 1.86 1.65 - 
5 1.91 1.71 1.36 
6 1.91 1.75 1.39 
7 1.93 1.77 1.33 
8 1.91 1.79 1.39 
9 1.90 1.79 1.41 
10 1.90 1.81 1.59 
11 1.86 1.74 1.65 
12 1.85 1.78 1.74 
13 1.84 1.78 1.46 
14 1.86 1.81 1.73 
15 1.85 1.81 1.89 
16 1.94 1.90 - 
17 1.93 1.89 - 

* Provided by EPA 
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Table 4. Mean PAI Values (Females). Values are for a 50000-person simulation (~1400 persons 
per cohort). 
 

Age CHAD (UNCORRECTED) UNIFIED 
ALGORITHM 

LITERATURE 
VALUE* 

0 1.85 1.57 - 
0.33 - - 1.2 
0.50 - - 1.31 
0.75 - - 1.29 

1 1.86 1.56 1.3 
2 1.88 1.57 1.36 
3 1.86 1.59 - 
4 1.87 1.66 - 
5 1.85 1.69 1.33 
6 1.86 1.73 1.35 
7 1.84 1.75 1.41 
8 1.85 1.76 1.47 
9 1.85 1.77 1.6 
10 1.83 1.76 1.55 
11 1.83 1.78 1.59 
12 1.80 1.77 - 
13 1.79 1.76 1.60 
14 1.79 1.76 1.66 
15 1.77 1.75 1.74 
16 1.94 1.90 - 
17 1.83 1.81 - 

*Provided by EPA 
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Figure 1.  Fast  components of oxygen deficit and recovery.
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Figure 4. Maximum M (METS reserve) value that can be sustained during constant–intensity 
exercise of duration T.
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panels were adjusted for fatigue.   
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Figure 7.  Event series for a 13-year-old female (METSmax=14), showing small upwards
adjustments in METS for EPOC.
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Appendix.  
 
A1.  Algorithm FORTRAN Code  
The APEX ventilation routine code is given below.  The highlighting marks the statements 
associated with the unified algorithm. 
SUBROUTINE Ventilation(P)                                            ! Called from main APEX 
program 
   INTEGER (KIND=IK), INTENT(IN) :: P                                ! Input variable (profile 
number) 
   INTEGER (KIND=IK), PARAMETER  :: MAXEVENTS = 60000                ! Max # of events per person 
   INTEGER (KIND=IK) :: H, I, J, K                                   ! Local integer variables 
   REAL    (KIND=RK) :: RecoveryT, OxdFrac, DeltaOxdFrac             ! Local real variables 
   REAL    (KIND=RK) :: Over, MaxOver,  origmets                     ! Local real variables 
   REAL    (KIND=RK) :: METSFactor, METSMax, PAI, PAIold             ! Various limits on METS 
   REAL    (KIND=RK) :: LogTerm, LogVEBM, VO2Factor, METStoO2        ! More local real variables 
   REAL    (KIND=RK) :: Z(MAXEVENTS), Random, Weightkg               ! More local real variables 
   REAL    (KIND=RK) :: Sfast, Dmax, Duration, M, F, Mlast, Morig    ! More local real variables 
   REAL    (KIND=RK) :: Flast, DelM, EPOCfast, EPOCslow, METS, Del2  ! More local real variables 
   REAL    (KIND=RK) :: DeltaMETS, METSlast, DelFfast, DelFslow      ! More local real variables 
   REAL    (KIND=RK) :: NewMax,A, B, ChangeDur, Rand(2), Fraction    ! More local real variables 
   ! Global constants: IK, LogU, LV_MS2, RK, SL_FM2, ST_MS2, YES 
   ! Global vars used: DebugLevel, DoDose, NumDays, NumEvents, NumHours, Phys 
   ! Global vars set : EventSeq, HourSeq, ISdPrs, PersonDay, ProcLevel, ProcName 
   ! Module vars set : PAIArray 
   ! Intrinsic procs : EXP, LOG, MAX, MAXVAL, MIN, MOD, RANDOM_SEED, REAL, SUM, WRITE 
   ! APEX procedures : RnNor 
   ProcLevel = ProcLevel+1                                           ! Increment procedure depth 
   ProcName(ProcLevel) = "Ventilation"                               ! Procedure name for 
messages 
   IF (DebugLevel>1) WRITE(LogU,SL_FM2) ST_MS2, ProcName(ProcLevel)  ! Message for debugging 
   IF (P==1) THEN                                                    ! If start of simulation 
      ALLOCATE(PAIArray(NumDays),STAT=AllocErr)                      ! Buffer for PAI values 
      CALL CheckAllocation(AllocErr)                                 ! CheckAllocation 
   ENDIF                                                             ! End start simulation logic    
   EventSeq(:)%VA  = 0.                                              ! Initialize VA value per 
event 
   EventSeq(:)%VE  = 0.                                              ! Initialize VE value per 
event 
   HourSeq(:)%VE   = 0.                                              ! Initialize VE value per 
hour 
   HourSeq(:)%VA   = 0.                                              ! Initialize VA value per 
hour 
   HourSeq(:)%EE   = 0.                                              ! Initialize EE value per 
hour 
   CALL RANDOM_SEED(Put=ISdPrs(1:KSeed))                             ! Initialize physiology seed 
   IF (NumEvents>MAXEVENTS) Call Fatal(1)                            ! Array bounds of Z exceeded  
   CALL RnNor(NumEvents,Z,-4.,4.)                                    ! Pick NumEvents normal 
numbers  
   CALL RANDOM_SEED(Get=ISdPrs(1:KSeed))                             ! Store the physiology 
random seed 
   CALL RnNor(2,Rand,-2.,2.)                                         ! Generate normals 
   CALL RANDOM_NUMBER(Random)                                        ! Generate normals 
   RecoveryT       = Phys(P)%RecTime                                 ! Recovery time (hours) 
   Weightkg        = Phys(P)%Weight*.4536                            ! Weight in Kg 
   METSMax         = Phys(P)%MetsMax                                 ! METS limit for profile P 
   METSFactor      = Phys(P)%ECF*Phys(P)%RMR*19630.                  ! METS to VA conversion 
factor 
   METStoO2        = 3.5*Weightkg*60                                 ! METS to O2 factor 
([mlO2/hr]/MET)            
   IF (Person(P)%Age >  17) Dmax = 52.33+15.11*Rand(1)               ! Dmax for adults (ml/kg) 
   IF (Person(P)%Age <= 17) Dmax = 63.95+31.05*Rand(1)               ! Dmax for adolescents 
(ml/kg) 
   IF (Person(P)%Age <  12) Dmax = 34.74+12.70*Rand(1)               ! Dmax for children (ml/kg) 
   Dmax         = (Dmax*Weightkg)/(METStoO2*(METSMax-1))             ! Dmax (M-hr)  
   Sfast        = (0.6+2.3*Random)*60                                ! Slope of fast recovery 
(METS/hr)    
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   Sfast        = (Sfast)/(METSMax-1)                                ! Slope of fast recovery 
(M/hr)    
   VO2Factor    = Phys(P)%ECF*Phys(P)%RMR/Phys(P)%BM                 ! VO2/BM at rest (l-
O2/min/kg) 
   PersonDay%EndGn = Phys(P)%ENDGN1                                  ! Normal EndGn rate (all 
days) 
   K               = Phys(P)%Start                                   ! Phase of menstrual cycle 
   IF (K>0) THEN                                                     ! If menstrual cycle exists 
      DO J=1,NumDays                                                 ! Loop over days in 
simulation  
         IF (1+MOD(J+K,28)>14) PersonDay(J)%EndGn = Phys(P)%ENDGN2   ! Set 14 days per 28 to 
ENDGN2 
      ENDDO                                                          ! Continue with next day   
   ENDIF                                                             ! End of ENDGN logic 
   METSFactor      = Phys(P)%ECF*Phys(P)%RMR*19630.                  ! METS to VA conversion 
factor  
   CALL RnNor(NumEvents,Z,-4.,4.)                                    ! Pick NumEvents normal 
numbers  
   CALL RnNor(2,Rand,-2.,2.)                                         ! Generate normals 
   CALL RANDOM_NUMBER(Random)                                        ! Generate normals 
   CALL RANDOM_SEED(Get=ISdPrs(1:KSeed))                             ! Store the physiology 
random seed 
   Flast        = 0.                                                 ! Initialize O2 debt       
   Mlast        = 0.                                                 ! Initialize prev METS value 
   IF (Person(P)%Age >  17) Dmax = 54.95+14.46*Rand(1)               ! Max O2 debt for adults 
(ml/kg) 
   IF (Person(P)%Age <= 17) Dmax = 63.95+21.12*Rand(1)               ! Max debt for adolescents 
(ml/kg) 
   IF (Person(P)%Age <  12) Dmax = 34.74+13.10*Rand(1)               ! Max O2 debt for children 
(ml/kg) 
   RecoveryT    = Phys(P)%RecTime                                    ! Recovery time (hours) 
   MetsMax      = Phys(P)%MetsMax                                    ! METS limit for profile P 
   A            = 5.20-(1.54/RecoveryT)+(3.92/RecoveryT**2)          ! O2 deficit regression 
coeff A 
   B            = 3.93-(3.57/RecoveryT)+(3.66/RecoveryT**2)          ! O2 deficit regression 
coeff B 
   Dmax         = Dmax/(3.5*60.*(METSMax-1.))                        ! Convert Dmax units to (M-
hr)  
   Sfast        = (0.6+3.1*Random)*60./(METSMax-1.)                  ! Slope of fast recovery 
(M/hr)    
   DO I=1,NumEvents                                                  ! Loop over events    
      Origmets  = EventSeq(I)%METS                                   ! Current unadjusted METS 
      Mets      = MIN(MAX(Origmets,1.001),MetsMax)                   ! METS, bounded by 1 and 
METSmax 
      Duration  = EventSeq(I)%Duration/60.                           ! Duration in hours 
      M         = (Mets-1.)/(MetsMax-1.)                             ! Unadjusted value for M  
      DO WHILE (M>0)                                                 ! Loop until fatigue is 
acceptable 
         DelM      = M-Mlast                                         ! Change in M from prior 
event   
         DelFfast  = 0.5*((DelM)*(abs(DelM)))/(Sfast*Dmax)           ! DeltaF fast    
         Del2      = ABS(DelM)-Sfast*Duration                        ! Determine if Fast is 
truncated 
         IF (Del2 > 0.) DelFfast = DelFfast*(1.-Del2**2/DelM**2)     ! Cut DelF(fast) if 
truncated 
         DelFslow  = (A*(M**B)-1./RecoveryT)*Duration                ! Calculate DelF(slow) 
         IF (Flast+DelFfast+DelFslow < 0.) THEN                      ! If more than full recovery   
            fraction = Flast/ABS(DelFfast+DelFslow)                  ! Determine excess recovery   
            DelFFast = DelFfast*fraction                             ! Limit fast recovery 
            DelFSlow = DelFslow*fraction                             ! Limit slow recovery   
         ENDIF                                                       ! End of excess recovery 
correction  
         EventSeq(I)%Deficit = Flast + DelFfast + DelFslow           ! New deficit (F) value  
         IF (EventSeq(I)%Deficit < 1.) EXIT                          ! If F value is ok, exit 
         M = M - 0.01                                                ! Adjust M downwards and try 
again 
      ENDDO                                                          ! End fatigue adjustment 
logic 
      EPOCfast = 0.                                                  ! Default is no fast EPOC  
      IF (DelFfast<0.) EPOCfast = ABS(DelFfast)*Dmax/duration        ! Determine fast EPOC 
      EPOCslow = 0.                                                  ! Default is no slow EPOC 
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      IF (DelFslow<0.) EPOCslow = ABS(DelFslow)*Dmax/duration        ! Determine slow EPOC 
      M = M + EPOCfast + EPOCslow                                    ! Adjust M for EPOC 
      DeltaMets = 1.+M*(MetsMax-1.)-Mets                             ! Change in absolute METS 
      IF (OrigMets<1.)  Mets = OrigMets                              ! Return METS<1 to orig vals    
      EventSeq(I)%Mets = Mets+DeltaMets                              ! Update event METS w/EPOC  
      if (EventSeq(I)%Deficit<0) EventSeq(I)%Deficit=0               ! Fix any roundoff error in 
F 
      Flast = EventSeq(I)%Deficit                                    ! Update last F  
      Mlast = M                                                      ! Update last M 
   ENDDO                                                             ! End loop over events 
      DO I=1,NumEvents                                               ! Loop over diary events 
      EventSeq(I)%VA = EventSeq(I)%METS * METSFactor                 ! VA is proportional to METS 
      LogTerm        = LOG(EventSeq(I)%METS*VO2Factor)               ! Log(VO2/BM) term 
      IF (P==37118) Write(LogU,'(I6)') I                             ! jel 
      LogVEBM        = Phys(P)%VEinter + Phys(P)%VEslope*LogTerm    &  
                      +Phys(P)%VEresid*Z(I)                          ! Regression for Log(VE/BM)     
      EventSeq(I)%VE = Phys(P)%BM * EXP(LogVEBM) * 1000.             ! Solve for VE in (ml/min) 
   ENDDO                                                             ! Continue with next diary 
event 
   DO I=1,NumHours                                                   ! Loop for update hour 
variables 
      J = HourSeq(I)%FirstEvent                                      ! First event for given hour  
      K = HourSeq(I)%LastEvent                                       ! Last event for given hour 
      HourSeq(I)%Mets =                                             &  
         SUM(EventSeq(J:K)%Mets*EventSeq(J:K)%Duration)/60.          ! Mean METS value for given 
hour  
      HourSeq(I)%EE = Phys(P)%RMR*HourSeq(I)%Mets                    ! Energy expenditure kcal/hr        
      HourSeq(I)%VE =                                               &  
         SUM(EventSeq(J:K)%VE*EventSeq(J:K)%Duration)/60.            ! Mean VE value for given 
hour  
      HourSeq(I)%VA =                                               &  
         SUM(EventSeq(J:K)%VA*EventSeq(J:K)%Duration)/60.            ! Mean VA value for given 
hour  
      HourSeq(I)%EVR = HourSeq(I)%VE/(1000*(Phys(P)%BSA))            ! Mean EVR for hour (l/min-
m^2)   
      HourSeq(I)%PAI =                                              &  
         SUM(EventSeq(J:K)%Mets*EventSeq(J:K)%Duration)/60.          ! Mean PAI value for given 
hour 
      IF (I<=8) THEN                                                 ! First 8 hours use special 
logic  
         HourSeq(I)%Run8EVR  = SUM(HourSeq(1:I)%EVR)/I               ! Running 8-hour average for 
EVR 
      ELSE                                                           ! If beyond first 8 hours 
         HourSeq(I)%Run8EVR  = HourSeq(I-1)%EVR  +                  & 
            (HourSeq(I)%EVR-HourSeq(I-8)%EVR)/8.                     ! Add new hour and drop off 
old 
      ENDIF                     
   ENDDO                                                             ! End hour sequence update            
   DO I=1,NumDays                                                    ! Loop over days in 
simulation 
      PersonDay(I)%PAI = SUM(HourSeq(24*I-23:24*I)%PAI)/24           ! Daily average PAI   
   ENDDO                                                             ! End day loop    
   PAIArray=REAL(PersonDay%PAI,LONG)                                 ! Fill the temp PAI array 
   CALL Percentiles(PAIArray,                                       & 
      NumDays,50.0,1,Person(P)%PAI)                                  ! Get median PAI over days  
   IF (DebugLevel>1) WRITE(LogU,SL_FM2) LV_MS2, ProcName(ProcLevel)  ! Message for debugging 
   ProcLevel = ProcLevel-1                                           ! Decrement procedure depth 
END SUBROUTINE Ventilation                                           ! Return to main APEX 
program 
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2. Data for Calculation of Maximum Accumulated Oxygen Deficit, Dmax 

Abbreviations 
SD = Standard deviation 
SE = Standard error 
c = Children 
ad = Adolescents 
a = Adults 
m = Males 
f = Females 
b = Both 
 
 

Study VO2Max SD SE Dmax SD SE age gender
(ml/kg-min) (ml/kg)

Berthoin et al. 2003 43.3 5.3 34.3 11.8 c f
Berthoin et al. 2003 48.7 8.1 33.6 13.6 c m
Bickham et al. 2002 64.4 6.1 43.3 a b
Billat et al. 1996 63.2 4.2 40.1 14.9 a f
Billat et al. 1996 77 6.4 48.9 21.3 a m
Buck and McNaughton 1999 57.5 2.4 53.4 a m
Carlson and Naughton 1993 43.3 1 41 14.4 2.4 c f
Carlson and Naughton 1993 43.3 1 35 13.2 2.2 c f
Carlson and Naughton 1993 43.3 1 32 13.8 2.3 c f
Carlson and Naughton 1993 53.9 2.3 33 25.8 4.3 c m
Carlson and Naughton 1993 53.9 2.3 35 22.2 3.7 c m
Carlson and Naughton 1993 53.9 2.3 34 19.2 3.2 c m
Doherty et al. 2000 58 4.6 69 a m
Doherty et al. 2000 58 4.6 70.4 a m
Doherty et al. 2000 58 4.6 71.4 a m
Faina et al. 1997 72 4 45.9 19 a m
Gastin  et al. 1995 57 3 42 a b
Gastin  et al. 1995 57 3 43.9 a b
Gastin  et al. 1995 57 3 44.1 a b
Gastin  et al. 1995 55 3 51.2 a b
Gastin  et al. 1995 55 3 52.1 a b
Gastin and Lawson  1994 53.1 2.1 47.6 a m
Gastin and Lawson  1994 53.1 2.1 49 a m
Gastin and Lawson  1994 53.1 2.1 49.6 a m
Hill  et al.1998 48.2 9.1 42 22 a b
Maxwell and Nimmo 1996 112.2 5.2 74.6 a m
Naughton et al. 1997 49.6 3.5 58.6 22.2 3.7 ad f
Naughton et al. 1997 49.6 3.5 58.1 28.2 4.7 ad f
Naughton et al. 1997 61.7 2.2 71.5 35.4 5.9 ad m
Naughton et al. 1997 61.7 2.2 67.6 38.4 6.4 ad m
Olesen 1992 53.5 40 11 a b
Olesen 1992 62.5 57 8 a b
Olesen 1992 53.5 69 8 a b
Olesen 1992 53.5 72 20 a b
Roberts et al. 2003 62.3 9 49.1 13 a b
Roberts et al. 2003 62.3 9 50.5 14.1 a b
Weber and Schneider 2000 38.5 1.8 38.2 15.6 2.6 a f
Weber and Schneider 2000 43.4 1.5 46.3 14.4 2.4 a m
Woolford et al. 1999 74.2 2.3 38.7 5.4 ad b
Woolford et al. 1999 74.4 3.5 54.4 9.7 ad b
Woolford et al. 1999 76.2 2.9 56.8 9.1 ad b
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A3.  Data for Calculation of the Slope of the Fast EPOC Component 
 
 
 

 

Study Peak VO2 Baseline VO2 post-EPOCfast Duration of EPOCfast Slope Slope
(ml/min) (ml/min) ml/min min ml/min/min METS/min

Dawson et al. 1996 1900 250 450 2.5 580.00 2.320
Almuzaini et al. 1998 2500 250 425 2.75 754.55 3.018

Knuttgen 1970 2500 250 400 2.5 840.00 3.360
Short and Sedlock 1997 1800 250 575 2 612.50 2.450
Short and Sedlock 1997 1500 250 400 2 550.00 2.200

Harms et al. 1995 2976 300 399 7 368.14 1.227
Harms et al. 1995 2688 300 420 7 324.00 1.080
Trost et al. 1997 1900 250 550 4 337.50 1.350

Pivarnik and Wilkerson 1988 3300 250 900 5 480.00 1.920
Pivarnik and Wilkerson 1988 2600 250 650 5 390.00 1.560
Pivarnik and Wilkerson 1988 1650 250 520 5 226.00 0.904

Frey et al. 1993 2610 350 725 5 377.00 1.077
Frey et al. 1993 2003 350 580 5 284.60 0.813
Frey et al. 1993 1688 300 609 5 215.80 0.719
Frey et al. 1993 1373 300 493 5 176.00 0.587

Kaminsky et al. 1990 2100 220 475 2 812.50 3.693
Maresh et al.  1992 2262 312 624 5 327.60 1.050
Maresh et al.  1992 2340 312 702 5 327.60 1.050

MEAN 4.263888889 443.54 1.688
Std dev 1.605304219 204.55 0.949
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Introduction

Exposure models like APEX and SHEDS are microenvironmental personal simulation models.  
The determination of exposure requires time series for both (a) microenvironmental pollutant
concentrations and (b) personal time-activity patterns.    To estimate longitudinal exposure
patterns, it is necessary to produce a longitudinal time-activity diary for each simulated person
which covers the entire simulation period.   The human time-activity databases used by exposure
models contain no longitudinal diaries of sufficient length.  (Models are typically run for a year
or more.)    Various methods of assembling single-day diaries into a longitudinal pattern are
currently implemented in EPA exposure models.  This report describes a new method that
correctly meets user-defined targets for both variance and autocorrelation.

The output from an exposure model like APEX or SHEDS consists of a set of exposure time
series, one for each simulated individual.  Of course, the mean exposure is important, both within
an individual (the mean over time) and across individuals (the population mean).   The existing
diary assembly methods are good at determining these means.   However, there is a growing
recognition that variation in exposure is also important.  One such aspect is within-person
variation, which is useful for determining the frequency and intensity of high-exposure events,
even for persons whose mean exposure is low. Another aspect is the between-person variance,
especially in some long-term measure of exposure.  For example, to assess the carcinogenic risk
from pollutants that slowly accumulate in the body, the average daily dose (ADD) over a period
of several years may be a useful measure of exposure.  Then the distribution of risk across the
population depends on the distribution of ADD.  A large part of the variance in this distribution
may be due to persistent differences in activities among individuals.  To characterize this
distribution correctly, it is necessary to have longitudinal activity diaries with persistent
differences in activities between individuals, even for persons in the same age-gender cohort.
  
Another aspect of longitudinal diary assembly is similarity in diaries from day to day, reflecting
the degree of repetitiveness in human behavior.  Statistically, this can be measured by
autocorrelation.  The proposed method uses a one day lag.  Longer lag times could be
considered, but the strength of the correlation decreases rapidly with elapsed time (Xue et al.,
2004; MacIntosh, 2001).  

Cohorts and Diary Pools

Nearly all diary assembly methods depend on some method of cohort specification.  Diaries are
drawn from cohorts,  which are population subgroups whose members have certain common
characteristics.  It is reasonable to expect that at least on average, people who are closely
matched in age and gender (and possibly other properties such as employment status) would
have activity patterns that are more similar than people of widely differing demographic status. 
Hence, if one were attempting to construct a longitudinal activity diary for a 30 year old working
female, it is reasonable to use a set of single-day diaries belonging to (say) the cohort of working
females ages 25-44.   Note that the cohort cannot be defined too narrowly, or there might not be
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enough single-day diaries in the database to allow the proper variation in activities.  This is the
main reason why cohorts often consist of a range of ages, rather than a single year of age.  

The creation of cohorts involves a trade-off between two factors.  A narrower or smaller age
range for each cohort increases the similarity between the people supplying the diaries and the
target individual for whom the diary is assembled (Graham and McCurdy, 2004).   However, for
statistical stability it is necessary that the pool of available diaries from which the selections are
made does not get too small.   

Within cohorts, additional criteria for diary selection may be imposed.   For example, it is often
the case that diaries are matched by day of week and season, and sometimes by temperature
and/or rainfall as well.   The set of diaries available for possible selection on a given simulation
day is called a diary pool or subgroup.   In short, the term ‘cohort’ refers to restrictions on the
universe of available diaries that apply to a given person throughout the entire simulation,
whereas ‘pool’ refers to restrictions that apply on a particular simulation day, but may change on
subsequent days.   Each simulated person belongs to only one cohort, but may move through
several diary pools as the simulation progresses.  It is permissible for the diaries in the diary pool
to have unequal selection probabilities.  For example, perhaps a diary that is an exact match in
age to the simulated individual is given a higher a priori selection probability than a diary from a
person of slightly different age. 

This appendix does not address the questions of cohort or pool definition.  Once these definitions
are given, the next step is to specify the method of selecting one-day diaries from each pool for
assembly into a single longitudinal diary.   This selection process should result in a ‘realistic’
distribution of the dominant exposure-related variable on the diaries.  One of the strengths of the
proposed diary assembly method is that it does not directly depend on the cohort or pool
definitions; the same method (and computer code) is applicable in all cases. 

Indexing the diary database by scores for a key variable

For this discussion, it is assumed that there is some measurable property of the diaries that has a
dominant influence on exposure.  To obtain credible exposure estimates, it is necessary to
assemble longitudinal diaries that have a realistic distribution for this key property.  A specific
example of this key property could be the total time spent outdoors, which is currently used by
the SHEDS-Wood model for assembling longitudinal activity diaries.  For other pollutants the
key variable might be travel time or time performing a particular activity, for example.  The key
or index variable could also be a composite formed from several different variables, for example,
a sum or perhaps a weighted average of other variables.  The necessary condition for
implementing the method is that every single-day diary be assigned a numeric value for this key
variable.  This allows the set of available diaries in every diary pool to be ranked in terms of this
key variable, from lowest to highest.  While the diary assembly method does not depend on how
this key variable is defined,  in examples given below it is assumed (for specificity) that the key
variable is outdoor time.
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An important aspect of this approach is that all references to the key variable are in terms of
scores.   This means that within every pool of diaries, the individual diaries are ranked from
lowest to highest in terms of the key variable and assigned a score which indicates their place in
the list.  This score is bounded between zero and one.  If there are K diaries in a pool, and each
diary has equal statistical weight, then the score for the diary at rank R is

score = ( R - 1/2 ) / K    (1)

Similarly, when individuals are being ranked within a group of P persons,  then the score for the
person at rank R in the group is 

score = ( R-1/2 ) / P. (2)

The scores are useful for several reasons.  First, the distributional properties are known, whereas
the distributional properties of the key variable itself would depend on its definition and,
furthermore, might well vary from cohort to cohort and from pool to pool.  Knowing the
distributional properties allows the specification of methods that target certain statistics.  Second,
the score  reflects the behavior of an individual relative to their peer group (for example, a score
of 0.75 means that the person ranks above 75% of the people in the same cohort and pool, in
terms of the key variable).   Third, scores can be moved across diary pools, whereas absolute
values for the key variable might not.  For example, there might be a diary with six hours of
outdoor time in the Sunday pool, but no such diary in the Monday pool.  But a score of 0.75 has
meaning on all days and can be mapped to a specific diary.  The ability to move scores across
day types is important in the autocorrelation matching, as described below.   Fourth, the use of
scores helps in ensuring that all the available diaries are collectively sampled with the correct
frequency.  
Note that the use of ranks or scores does not preclude the ability to return to the original key
variable.  In terms of diary assembly, it is necessary to specify which diary should be used on a
given simulation day.  For this purpose, requesting the available diary nearest to score 0.38 is no
different than requesting the available diary nearest to (say) 73 minutes of outdoor time.  Once
the diary is chosen, the exact value of the key variable on that diary can be recovered. 

The statistics D and A

For this assessment, two statistics are used.  The first is called ‘D’, which measures long-term
differences between persons in the same cohort.  The second is called ‘A’; it is the mean across
persons of the daily autocorrelation coefficient of the scores.  Detailed mathematical properties
of D and A are given in the appendix.  Both D and A are collective properties of a group of
persons.  To calculate them, a time series for the key variable is needed for each person.  There
may be some gaps or missing values in the time series, but to calculate D it is necessary that
there is substantial temporal overlap between persons, as each person is ranked relative to the
others on each day.
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The following discussion of how D and A are calculated assumes that a longitudinal diary is
available for each individual.  The discussion of how one constructs longitudinal diaries that
collectively have desired values of D and A for model simulation runs comes later.  

D is calculated as follows.  For each day,  rank each person relative to their cohort and use
equation (2) to generate a score.   Here P may possibly vary from day to day; it is the number of
persons with non-missing values on each day.   The underlying assumption is that the sample on
any given day is representative, so that a score of 0.38 would mean that the person ranks above
about 38% of all the other persons in the cohort, even if only part of the cohort was sampled on
that particular day.  Days with a very small diary pool should therefore be excluded from the
analysis.

This yields a time series of daily scores for each person.   Find the mean and variance of the
scores for each person over their time series.  The overall within-person variance  Fw

2 in the
group is the mean of these individual time variances.   The between-person variance Fb

2 is the
variance across persons in the mean scores for each time series.  The statistic D is then given by

D  =  Fb
2 / (Fb

2 + Fw
2 ). (3)

Since both variances must be non-negative, it is clear that D is a proper fraction, bounded
between zero and one.  D=0 means that Fb

2 is zero, or that each person has the same mean score. 
A small D means that Fb

2 is substantially smaller than Fw
2.   A D near one means that Fb

2 is much
larger than Fw

2, or that each person shows little variation over time relative to the variability
between persons. 

The criteria for defining cohorts and diary pools are determined by the user, and the proposed
method places no restrictions on these criteria.  However, the calculation of D can provide a
useful indicator of whether cohorts have been reasonably defined.  A large value for D indicates
large variability in long-term behavior between the individuals, and this is contradictory to the
concept of cohorts.

The autocorrelation A is even simpler to calculate than D, because each time series can be
examined independently.  The first step is to determine the score for each day, relative to the
entire time series.  If there are J days in the time series, and a given day is at rank R in terms of
the rank for the key variable among the J days, then the score for that day is  ( R-1/2 ) / J.  The
overall mean and variance in these scores for the time series is then calculated.   However, due to
the properties of the discrete uniform distribution of the scores (neglecting tied scores), the mean
must be 1/2 and the variance is (1/12) (1-1/J2 ), which is very close to 1/12 for J large.  The lag-
one covariance is also determined; it is (1/J) times the sum of the paired products 
(score(j)-1/2)*(score(j+1)-1/2),  where score(j) is the score on day ‘j’ (see, for example, Box et
al., 1994).   The lag-one autocorrelation for the time series is given by the ratio of the covariance
to the variance.   This calculation is repeated for each time series, and the statistic A is the mean
of these individual autocorrelations.   The statistic A has a range from -1 to +1, with positive
values indicating that each day has a tendency to resemble the day before.  Random selection of
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diaries from day to day produces A values near zero.  Negative A values imply dissimilarity
between consecutive days.  

A study of children conducted in Southern California (see Xue et al. 2004) provides about 60
days of data on each of 163 children.  The time series are not continuous, as the monitoring
consisted of twelve six-day periods, one per month over a year.   Furthermore, only about 40
children were measured simultaneously, as the other children were sampled in different weeks. 
However, a sample size of 40 is sufficient to calculate reliable rankings across persons.  The
number of consecutive day pairs was substantially less than the number of days, due to the gaps
in the time series.  However, D and A statistics were calculated for three variables directly
recorded on the activity diaries (outdoor time, travel time, and indoor time), and also for a fourth
variable, the physical activity index or PAI (McCurdy et al., 2000).  The analyses were
performed for all children together and for two gender cohorts.  The separation into two cohorts
reduces the number of children measured simultaneously to fewer than 20.  Further division into
more cohorts is therefore not practical, as the reliability of the scores would decrease. The results
for these analyses are given in Table 1.
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Table 1:  D and A statistics derived from the Southern California study data

Variable Group D A
outdoor time all 0.19 0.22
outdoor time boys 0.21 0.21
outdoor time girls 0.15 0.24
travel time all 0.18 0.07
travel time boys 0.18 0.05
travel time girls 0.18 0.08
indoor time all 0.17 0.22
indoor time boys 0.21 0.20
indoor time girls 0.17 0.24
physical activity all 0.16 0.23
physical activity boys 0.16 0.20
physical activity girls 0.16 0.25

Here ‘physical activity’ is measured by PAI, which is the ratio of total energy expenditure per
day to the basal metabolic energy expenditure per day, estimated from the diary times.  For all
variables and each group, the standard deviation between persons for autocorrelation was about
0.20, and the standard error in the mean A was about 0.02.    Table 1 indicates that gender
differences for both D and A are small, if present at all.  

It should be noted that the variables in Table 1 are not really independent.  The sum of the three
time variables equals 24 hours in all cases.  Furthermore, PAI is derived from the same three
times, so part of the similarity across variables is due to these relationships.

Generating longitudinal diaries

Exposure models like APEX and SHEDS construct a number of ‘simulated individuals’, whose
demographic characteristics are intended to be representative of the target population.  A
longitudinal activity diary is constructed for each such person; it is to be hoped that the
collective properties of these diaries are also representative of the target population, or at least
the distribution of the key variable affecting exposure.  As mentioned earlier, the new diary
assembly method  does not impose any constraints on the methods of constructing cohorts and
diary pools, so it is up to the modeler to ensure that these are defined appropriately.  The new
method just ensures that the selections from these pools match the requested targets for D
(variance ratio) and A (autocorrelation).  The target values for D and A are supplied by the
modeler.

First, construct a beta distribution (with parameters as specified in the Supplement) for the
distribution of personal mean scores.   For each simulated person, first select a mean target score
T at random from this beta distribution.   Then, for each individual, construct another beta
distribution with mean equal to T.  From this second beta distribution, pick a set of independent
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random values containing approximately 3% more numbers than there are days in the simulation
period. Call this the set of X-scores and let K be the number of scores selected.   At this point,
one has P sets of X-scores, each containing K values.   

The second part of the process is to generate the requested autocorrelation by reordering the
collection of selected values.  First, choose a target autocorrelation for each individual.  This is
selected from a beta distribution with a mean of A.  For each individual, the set of X-scores are
ranked from lowest to highest.  For the first simulation day, choose any X-score at random.  For
each subsequent day, construct a new beta distribution (the parameters of the beta depend on A
and the selected value for the prior day, as detailed in the Supplement), and pick one value Y
from it.   Find the nearest X-score (in rank) to K*Y that has not already been assigned to a prior
day in the time series.  Continue this process until all simulation days are assigned values.  The
reason for the extra values is that without them, the last few days of the simulation would have
very few choices left, and this lack of freedom would inhibit meeting the requested
autocorrelation.

The result of these steps is a vector of X-scores, one value per simulation day, for each person. 
It remains to now associate a diary with each X-score.  Recall that the user has specified the
appropriate diary pool for each simulation day.   The diaries in the pool are assigned a
cumulative probability distribution as follows.  First, they are sorted by the key variable.  Then  a
selection probability is assigned to each diary as determined by the diary pool structure (for
many models, equal probabilities are used).  

The following example illustrates how a diary is assigned to an X-score.  Suppose the pool for a
particular day had only four diaries, with probabilities in sorted order of 12%, 33%, 41%, and
14% of being used.  The cumulative probability vector is then (0.12, 0.45,0.86,1.00).  The X-
score assigned to this day is then used to determine which diary is selected.  If the X-score is
lower than 0.12 then the diary ranked lowest on the key variable is chosen.  If X is between 0.12
and 0.45 the second lowest diary is picked.  For X between 0.45 and 0.86 the next highest diary
is used.   Finally, if X is greater than 0.86 then the diary ranked highest on the key variable is
selected.  This process is repeated for each day of the simulation period.

Results

The following tables present some results obtained using the new method.   Tables 2 and 3
present comparisons of D and A statistics, respectively, calculated both from ranks and from key
variable values, for both the Southern California data and simulations using the new method.  
Table 4 displays the performance of the new method over the full range of both D and A.   Table
5 shows the performance of the proposed method for different simulation lengths, for a variety of
D and A values.
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Table 2. Computation of the D statistic calculated from ranks and key variable values, both
directly from the southern California study and from simulations using the proposed method.
Simulations constructed 20,000 longitudinal diaries for periods of forty-eight days.

Key
variable

Group Ranks Values

Study Simulation Study Simulation

outdoor time all .19 .19 .12 .14

outdoor time girls .15 .15 .11 .11

outdoor time boys .21 .21 .17 .18

travel time all .18 .18 .10 .13

travel time girls .18 .18 .10 .13

travel time boys .18 .18 .12 .14

indoor time all .17 .17 .12 .14

indoor time girls .17 .17 .11 .13

indoor time boys .21 .21 .16 .17

PAI all .16 .16 .12 .13

PAI girls .16 .16 .13 .12

PAI boys .16 .16 .13 .14
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Table 3. Computation of the A statistic calculated from ranks and key variable values, both
directly from the southern California study and from simulations using the proposed method.
Simulations constructed 20,000 longitudinal diaries for periods of forty-eight days.

Key
variable

Group Ranks Values

Study Simulation Study Simulation

outdoor time all .22 .21 .24 .19

outdoor time girls .24 .23 .26 .20

outdoor time boys .21 .20 .21 .19

travel time all .07 .07 .06 .06

travel time girls .08 .08 .07 .06

travel time boys .05 .06 .04 .05

indoor time all .22 .21 .23 .19

indoor time girls .24 .23 .26 .20

indoor time boys .20 .19 .19 .18

PAI all .23 .22 .26 .19

PAI girls .25 .24 .29 .21

PAI boys .20 .20 .23 .17
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Table 4. Performance of proposed method in hitting targeted values at selected points across the
ranges of the D and A statistics.

Requested Obtained

D A D A

0 0 .00 .00

0 .50 .01 .50

0 .99 .03 .99

0 -.50 .00 -.49

0 -.99 .00 -.99

.50 0 .51 .01

.50 .50 .51 .50

.50 .99 .53 .99

.50 -.50 .50 -.49

.50 -.99 .51 -.99

.99 0 .99 .01

.99 .50 .99 .50

.99 .99 .99 .99

.99 -.50 .99 -.49

.99 -.99 .99 -.99
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Table 5.  Performance of proposed method in hitting targeted values of the D and A statistics
over different lengths of the simulation period. The values of D=.19 and A=.22 are the values for
outdoor time obtained from the southern California study.

Simulation
period length

Requested Obtained

D A D A

30 days .19 .22 .20 .24

90 days .19 .22 .20 .24

1 year .19 .22 .20 .22

30 days .10 .40 .11 .40

90 days .10 .40 .10 .41

1 year .10 .40 .10 .40

30 days .40 .10 .41 .13

90 days .40 .10 .41 .12

1 year .40 .10 .41 .10

30 days .81 -.22 .81 -.17

90 days .81 -.22 .81 -.20

1 year .81 -.22 .82 -.21



13

Discussion

1) Use of ranks rather than the original key variable
2) Use of beta distributions rather than other forms
3) Ensuring no sampling bias within diary pools 
4) Performance over full range of D and A values
5) Performance of simulations of various lengths
6) Varying targets for D and/or A within a simulation
7) Movement of X-scores across day-types
8) The frequency distribution for relatively rare diary events
9) Ease of use 

1) Use of ranks rather than the original key variable
The new method makes use of rankings of the key variable in computing D and A statistics and
in the generation of X-scores, rather than using the original values of the key variable.   This
provides both a modeling advantage and a mathematical advantage.   The modeling advantage is
that it permits the maintenance of persistent differences while allowing a natural transition across
diary pools.  A person with a mean or target X-score of T has a tendency for a higher value for
the key variable than a fraction T of his/her peer group.  In the absence of information to the
contrary, it is reasonable to suppose that this tendency would persist.  If the key variable is
outdoor time, on cold and rainy days the entire group may spend less time outdoors, but this does
not suggest that the relative position of individuals within the group would change.   Once the
diaries are assembled, most persons will show drops in outdoor time on such days due to the
change in the diary pool, even though the X-scores themselves do not drop on such days.  This
combination of maintaining persistent differences between individuals while allowing the diary
pools to define the distribution of the key variable would be very difficult to attain using the
original (non-ranked) variable.

The mathematical argument for using ranks is that the method becomes much more general,
since the distribution of ranks does not depend on the choice of the key variable, or on the
definition of cohorts, diary pools, or day-types.  By contrast, the development of a parametric
method that tried to match statistics on the original values of the key variable would have to
depend on characterizing the distribution of that variable for the specific application of the
model.  For some variables like outdoor time, the distribution has a relatively low mean and
positive skewness (a long tail to the right), but for indoor time the mean is high and the
distribution is negatively skewed.   Furthermore, the distribution would depend on the specific
definition of the cohort, and would change as well with day-type and season.  It would also be
likely to change when going from one geographic region to another.   Every time the distribution
changes, the mathematical algorithms would have to change to reproduce the given distribution
while simultaneously meeting targets for both variability (here represented by D) and episodic
behavioral tendencies (here represented by A).  The complexity of such approaches would add
both a computational burden and a quality assurance burden to the exposure model.
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The performance of the proposed method was numerically evaluated against measured key
variable values using data from the southern California study (see Tables 2 and 3).  Note that the
protocol for this study did not match the assumptions used in developing this method; in
particular, different children reported diaries on different days, and each child had breaks in their
time series.  The new method was applied to three different key variables (outdoor time, travel
time, and indoor time), each with two cohort groupings (all children together, and separated by
gender).   Synthetic longitudinal diaries were constructed from the single-day diaries reported
during this study.  Both D and A statistics were calculated for the study and for the synthetic
diaries, using both the ranks and the key variable values.   

The D statistics on rankings were essentially the same for the original diaries and the synthetic
diaries.   The D statistics on ranks were consistently higher than those on key variable values
(average D on ranks ~ 0.18, average D on key variable ~ 0.12).   This is consistent with the
observation in the physical activity literature that people have more fixed tendencies in terms of
rankings than in the original variable (Anderssen et al., 1996; Kelder et al.,1994; Schwab et al.,
1992).  However, this may not apply universally to all variables (DeBourdeauhuij et al.,2002).  

More within-person consistency translates to less within-person variance for the rankings than
for the original variable.  By the form of the definition of D, this implies higher values for D for
the rankings.   This effect is evident in Table 2 for the four variables considered there.  For D
calculated on key variable values, the synthetic diaries (average D ~ 0.14) tended to exceed the
study (average D ~ 0.12) by only a small amount. 

Autocorrelations in the key variable values proved to be close to the autocorrelations in ranks,
for both the study and for the simulated diaries.   The simulated diaries were consistently close in
A to the study when measured using ranks.  Using the key variable values to calculate A, the
synthetic diaries tended to be lower  than the study (differences ranging from 0.01 to 0.07),
except when the key variable was time spent in travel.

2) Use of  beta distributions
All of the random number generation in the new method involves drawing numbers from beta
distributions.   This is convenient though not strictly necessary.  All of the random number
distributions are bounded both above and below, which is a natural property of the beta
distribution.  For instance, it would be quite feasible to select personal targets for autocorrelation
that were normally distributed about the overall population mean A, but since autocorrelation is
bounded between -1 and +1, it would then be necessary to truncate the normal on both ends. 
Most programming languages have built-in beta distribution functions, and for the ones that do
not (like Fortran), there are a number of well-tested algorithms developed for this purpose. 
Alternate distributions for generating the X-scores have been tested, for example a two-level
uniform (one probability inside a given sub-interval and a different probability elsewhere) has
been successfully used for this purpose. 

Given fixed end points, the beta distribution has two shape parameters which allow a great
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variety of forms.  Both shape parameters must be positive.  If both parameters exceed one, then
the distribution has the ‘usual’ form of a central peak, monotonically decreasing on either side
until reaching the bounds.  The location and width of this peak can be targeted separately, which
is convenient for targeting both a mean and a variance.   If the parameters fall on different sides
of unity, then the distribution is monotonic over its entire range (either increasing or decreasing),
often called a J-shaped beta.  If both parameters are less than one, a U-shaped distribution
results, with peak probability at each end.  Such U-shaped distributions are never used for X-
scores or diary reordering, but may be used to assign individual targets T.  A beta distribution
with both shape parameters equal to one is a uniform distribution.  In fact, if D=0 is requested,
then all the X-scores are chosen from such uniform beta distributions, and all persons have a
common target mean of T=0.5.  If D is set to one, then the targets T have a uniform distribution,
but the X-scores all become equal to T since the beta for them narrows to zero variance.  In
practice this would lead to numerical difficulties, so in implementation the code would usually
contain a restriction that D<0.99 (or some similar bound).   If a simulated person is given a target
autocorrelation of zero, then the beta distributions used to order the X-scores all reduce to
uniform distributions.

3) Ensuring no sampling bias within dairy pools
If a given pool of one-day diaries is believed to be representative for a given cohort on a given
day,  then to avoid any bias it is necessary that over a large population of simulated individuals,
all the diaries in the pool be used about equally often.  That is, the mean and variance of any
variable on that day for the group of simulated individuals should match the mean and variance
seen in the diary pool itself, since the pool is supposed to be representative of the real
population.  This is most easily achieved by the simple expedient of uniformly sampling from
the diary pool.

In the new method, the selection probabilities from the diary pool are not uniform for one
individual; they tend to be higher for diaries near to the target score T  than for ones further
away. To avoid overall biases, it is necessary that the mixture of all the personal betas over a
large group of persons be very close to uniform. So that, for example, a person who
preferentially samples diaries at the low end of the rankings should be balanced by a person who
preferentially samples the upper end.  An important constraint on the beta distributions used for
the T scores and the X-scores, is that the overall distribution of X-scores over a large simulated
population should be close to  uniform.   In general, exact uniformity cannot be achieved by
mixing betas; some particular X-scores may remain oversampled or undersampled by about 2%
relative to others.   However, it is possible to arrange these effects so that both the mean and
variance of the beta mixture match the mean and variance of a uniform distribution, which
ensures that the mean and variance of the key variable on the diaries is the same for the group of
simulated individuals as for the diary pool itself (in the limit of a very large number of
individuals), on each simulation day.  See the Supplement for details.

4) Performance over the full range of D and A
The D statistic is bounded between zero and one, and A is bounded between minus one and one.
There are no restrictions on D and A together; any A may be used with any D.  The limiting
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values on both parameters imply total order, which is incompatible with the concept of a 
stochastic simulation.  Furthermore, there is a minimum possible value for D that depends on the
simulation length; for a simulation of J days, D cannot be below 1/J.

Table 4 presents results at selected points over the full range of both D and A, using the new
method.  The values of D and A achieved with this new method agree with the target values
within 0.02 in nearly all cases, and within 0.01 much of the time.  Thus, if D is requested to be
0.25, it will nearly always fall between 0.23 and 0.27 for any sizeable simulation.  The same
holds for A, at least for A values greater than -0.5.  Large negative A targets do not match quite
as well, unless a correction factor is included in the algorithm.  Such a correction can be
implemented fairly easily, but in practice should not be necessary since such large negative A
values are not normally seen in human behavior patterns.  

Some other small but reproducible effects may be seen.  For example, if a very large and positive
autocorrelation is requested, it is achieved but the target D statistic becomes slightly larger than
requested (by about 0.02 for A=1). This effect is negligible for A<0.5, which means it is unlikely
to be an issue for human behavior simulations.  If it were deemed to be important, one could
compensate for it by suppressing the target D value in such cases.

5) Performance over various simulation lengths
The method has been tested successfully over a wide range of simulation lengths, ranging from a
few days up to six years.   Table 5 presents some results from these simulations. For all lengths
over 30 days, the match for both D and A is very good.  For very short simulations, it is difficult
to precisely target these statistics.  For one thing, the sample mean of the X-scores for any
individual does not necessarily come close to the target mean score T, when only a few scores
are drawn.   For another, it is very difficult to target particular autocorrelations merely by
rearranging the order of the values.  In fact, for three data points the autocorrelation cannot be
positive, no matter what their values or how they are rearranged.  For any simulation below one
week in length, the autocorrelation step is nearly irrelevant, although there is no harm in
allowing it to rearrange the scores.  For long simulations the performance is always good, with D
and A extremely close to the target values for simulations of six years in length. 

6) Varying targets for D and/or A within a simulation 
In certain applications the user might wish to vary D or A over time.  For example, different day-
types might each have their own targets, or perhaps D or A might change with seasons or with
age over a long simulation period.   The new method is easily extended to such a situation.   
Basically, the method would be applied separately to each set of days with a distinct D.   For
each set, define a distribution of target T scores, pick one for each person (keeping the percentile
the same for all sets), and pick enough X-scores for the given set of days.  The reordering would
be done within each distinct set of days, to prevent mixing X-scores from different distributions. 
The final time series would then merge the vectors for the various sets of days, according to the
calendar sequence.  

The implementation of multiple targets for A is extremely easy.  A new beta distribution is
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required every day since its parameters depend on both the target autocorrelation and on the rank
of the X-score assigned to the prior day, and this latter quantity changes every day.   Instead of
supplying the target autocorrelation as a scalar, use a vector indexed by the day number, and use
A(j) everywhere that A is currently used.

While it is not difficult to vary D and/or A by day-type, there is no evidence in the southern
California study data that this effect is significant.   Therefore, for simplicity, the basic
explanation of the new method does not include this possibility directly.  However, nothing is
fundamentally different if these extensions are used.

7) Movement of X-scores across day-types
The basic method does not distinguish differing D and A targets for differing day-types, as
discussed in the previous subsection.   But even if A depended on day-type, the X-scores could
be moved freely across day-types during the reordering step, as long as D and T did not change. 
This is because the X-scores are independently randomly sampled, and as long as the distribution
remains the same, the scores can be interchanged. 

As discussed in subsection (1) above, this is one of the advantages in using X-scores that are
based on relative rankings rather than employing the original variable.   The same distribution of
rankings exists on all day-types, although the distribution of the original key variable will differ
across day-types (if it did not, there is no reason to separate the day-types).  The proposed
method recognizes this difference through the differing diary pools.   For example, an X score of
0.25 may correspond to 40 minutes of outdoor time on a weekday, but correspond to 70 minutes
of outdoor time on a weekend.  The reason why the reordering has an overall null effect on the
mean and variance of the key variable is that it is just as likely for an X score of 0.25 to be
shifted from a weekday to a weekend as vice versa.   Therefore, over a large enough sample of
persons, the distribution of X-scores before reordering and after reordering are indistinguishable.

8) The frequency distribution for relatively rare diary events
One concern with many of the existing longitudinal diary assembly methods currently used in
exposure models is that they limit the within-person variance (and thereby induce behavioral
habits) by selecting relatively few different one-day diaries for each simulated individual.  This
leads to the forced re-use of each of the selected diaries many times.  Thus, a model that selects
only eight diaries to represent one year must use each diary an average of 45 times.  For such 
methods, each particular kind of diary event will occur with the correct overall frequency in the
population as a whole, but the frequency within individuals is highly distorted.

As an example, suppose the pollutant of concern is ozone.   The combination of high breathing
ventilation rate, outdoor activity, and warm daytime conditions will lead to high ozone exposure. 
Then a relatively rare event like a long distance run (for example, a marathon) is significant to
the exposure model.  Under the model where only eight diaries are used, if a long distance run
occurs at all (which is not likely), it occurs every time the diary is reused.   This leads to a
situation where the vast majority of the population have no such events, and a small number have
(say) 45 such events packed into one year (or even one season), with no one having only a few
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such events.

With the new method,  if the diary pool contains one diary with a long distance run (and hence
much outdoor time on that day), this diary might be selected not at all or perhaps once, for a
person whose target T has little outdoor time.  For persons with larger T , this diary might be
chosen a handful of times in a year.  For a person whose target T matches this diary closely, it
might be picked a couple of dozen times.  The point is that the population has a quasi-continuous
frequency distribution for this event, rather than a discontinuous one (having it occur either
never or at least 45 times).   Thus, the proposed method better reproduces the variance in
exposure across the population.

9) Ease of use
The proposed method places a minimal burden on the user in terms of required input.   Beyond
the definitions of cohorts and diary pools, which are always required (either as user input or
hard-coded into the model), the new method only requires the designation of the key variable
and the targets for D and A.   The various beta distributions are constructed by the model code
from these inputs without further user intervention.  

Summary

The new method is very flexible and succeeds in reproducing target D and A values over the
entire possible range, for any choice of key variable.  The D statistic of diaries assembled by the
new method is independent of the length of the simulation, unlike most existing diary assembly
methods.  The new method avoids forced repetitions of the same activity diary from one day to
another, and therefore allows for some events to occur uniquely or rarely on a given longitudinal
diary.   It imposes as much habitual behavior as is requested through the D and A statistics, no
more and no less.  The method is relatively simple to implement in computer models, requiring
the ability to sort lists and to draw random numbers from beta distributions.  A great advantage
over many other methods is that the computer code for generating the vectors of X-scores does
not depend on the choice of cohorts or diary pools.
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SUPPLEMENT

1) Statistical properties of longitudinal diaries

Consider a set of longitudinal diaries for P persons, each diary covering the same J days.  For
this analysis we will assume that there are no time gaps, so that all days are consecutive.  Let ‘j’
be an index that runs over simulation days, and let ‘i’ be an index that runs over persons. 
Consider just one variable and one cohort of persons, so all persons share the same pool of
available diaries on any given day.   Let t i j be the value of the variable of interest on day ‘j’ of
the longitudinal diary for person ‘i’.   Note that in this analysis, variance calculations use
division by the number of data points, without the convention of subtracting one to account for
degrees of freedom (Hogg and Craig (1995), Box et al. (1994) ).  

Let  : i be the average value for the given variable for person ‘i’,  so for i=1,...,P we have
                       J

: i = ( 1/J ) '   t i j  (1-1)
                   j =1

where J is the number of days in the simulation.   There is also an intra-personal (within-person)
variance for ‘t’ which may differ from one person to another:

                     J                                         J
Fi 

2  = ( 1/J ) '  ( t i j - : i ) 2  =  ( 1/J )   '  t i j
2  - : i 2 (1-2)

                      j =1                                      j =1

For convenience, define V 2  as
                                         P      J
V 2  =   1/(JP )  '   '   t i j 2 . (1-3)
                                        i =1   j =1 

The mean for the variable : i  over all persons is given by
                  P                         P     J
:  =  (1/P) '  : i  = 1/(JP)  '   '   t i j (1-4)
                  i =1                                   i =1  j =1

which is also the mean of all the t i j.  The total variance of the t i j  is given by 

                                      P    J                                   P    J
 F 2  =  1/(JP ) '  ' ( t i j - : )2  = 1/(JP ) '  '  t i j

2 - :2  =  V 2 - :2 (1-5)
                      i =1  j =1                                                    i =1  j =1 

The mean of the intra-personal variances across all persons is given by
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                      P                        P    J                                                                    P
Fw

2  =  (1/P) '  Fi
2  = 1/(JP) '  '  (t i j - :i) 2  =  V 2 - (1/P) '  :i

2 (1-6)
                     i =1                     i =1  j =1                                       i =1  

where the subscript ‘w’ stands for ‘within-person’.    There is also an inter-person (between
person) variance, which is the variance in the personal means :i 

                        P                                                        P
Fb

2  =  (1/P)  '  ( :i - : ) 2  =  (1/P)  '  : i
2   -  : 2 (1-7)

                     i =1                                  i =1                                     

where ‘b’ stands for ‘between-persons’.   In brief,  Fw
2 is the mean of the intra-personal

variances, while Fb
2 is the variance of the intra-personal means.   An important result is that 

Fw
2 + Fb

2  =  V 2 - : 2  =  F 2  (1-8)

which follows from the three prior equations.  Thus, for a given set of longitudinal diaries, Fw
2,

Fb
2 and F2 are tied together by equation (1-8).  This has important implications when targeting

variance.  For a given set of diary pools from which the longitudinal dairies are to be
constructed, the total variance F2 can be calculated.  This means that in longitudinal diary
construction there is a direct trade-off between Fw

2  and Fb
2 ; one can only be made larger if the

other is made smaller, given that the diaries are to be sampled in an unbiased manner.   

This is starkly illustrated by considering two extreme approaches to assembling longitudinal
diaries.  If, for each person, one simply chooses a single diary and reuses it each day, then Fw

2 =
0 and  Fb

2 is maximized.   Alternatively, if a new diary is chosen at random every day for each
person, each individual tends to have a similar  Fi 

2, and F 2 is comprised mostly of Fw
2, while Fb

2

tends to zero (particularly for large J).

The population variability in typical measures of long-term exposure like annual average daily
dose (ADD) or lifetime average daily dose (LADD) is proportional to Fb

2.   The mean exposure
will be correct for any unbiased method of longitudinal diary construction.   But for a fixed
mean, a higher variance implies that the high end of the exposure distribution will be at higher
values (and also that the low end is at lower values).   The high-end exposures are often of
interest, and the estimates of these exposures will be sensitive to the method of constructing
longitudinal diaries.   Hence it is important that the method be matched to experimental data as
far as possible.

Define D as 

D  =  Fb
2 / (Fb

2 + Fw
2 )  =  Fb

2 / F 2 (1-9)

This definition is similar to the definition of ICC used by Xue et. al. (2004).  The value of D may



S3

range from zero (when Fb
2 = 0)  up to one (when Fw

2 = 0).   Using equations (1-7) and (1-8), the
expression for D becomes

                               P                                                              
D   =   1/(P F2)  '  :i

2   -  :2 / F2 (1-10)
                          i =1                               

So this statistic reflects the distribution of the personal means :i.  It does not reflect any patterns
or ordering of the t i j  within a diary.  Note that it is possible to interchange two or more days
(interchange t i j and t i k  for two days ‘j’ and ‘k’), without changing :i or Fi

2  (or  : or F 2).   

Thus, longitudinal diary construction can be separated into two problems, the first being the
selection of the set of t i j values without any particular regard to day order, and the second being
to reorder them to match the patterns expected within individual longitudinal diaries.   These
patterns are summarized by autocorrelation statistics, discussed in section 3 below.

2) Specifying the parameters of the beta distributions for the Ti and X-scores

To complete the description of the proposed method, formulas for the parameters of the beta
distributions are required.  Each person simulated is assigned a personal target score Ti , which is
the mean of the distribution from which their X-scores are drawn.  For this analysis, the t i j are
the X-scores.  There are two constraints to be met.  The set of selected values t i j should produce
a sample D statistic close to the requested value, and the set of t i j  (across all persons) should be
as uniformly distributed between zero and one as is possible. 

A beta distribution with parameters ‘a’ and ‘b’, bounded by zero and one,  has a probability
density function (pdf) given by 

p(x) =   '(a+b)  x a-1 (1- x) b-1 / [ '(a)   '(b) ] (2-1)

which has a mean of

: (a,b)  =  a / (a+b) (2-2)

and a variance

F 2 (a,b)  =  a b / [(a+b)2 (1+a+b)]  (2-3)

(see for example Johnson, Kotz, and Balakrishnan, 1994).  Replacing ‘a’ and ‘b’ by the mean :
and the sum S (where S = a+b) results in 

p(x) =  '(S) x : S - 1 (1- x) S - : S - 1  / [ '(: S)   '(S - : S) ] (2-4)
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F 2 (:,S) =  : (1- :) / (1+S) . (2-5)

Except for the beta distribution that is used for selecting the personal targets Ti , all the beta
distributions used in this approach have bounds zero and one, so the above formulas apply.  

For the Ti, the bounds of the beta distributions are at (1/2-w/2) and (1/2+w/2), where ‘w’ is a
function of ‘D’ and may range from zero to one.  These beta distributions are symmetric about
their midpoint, so ‘a’ = ‘b’ = " .   The pdf in such cases is

p(x) =  '(2") ( 1 - (2x-1) 2 / w 2 ) "-1 / [ w '(") 2 2 2 "-2 ] ,   
                                                                    for (1/2-w/2) < x < (1/2+w/2) (2-6)

and the statistics for this distribution are mean 

 :   = 1/2 (2-7)

which is obvious from the symmetry, and variance

F 2 =  w 2 / (4 + 8 ") . (2-8)

For a particular person with a target score Ti , the beta distribution from which their X-scores are
drawn has a mean Ti and a variance which follows from (2-5):

Fi 
2  =  Ti (1 - Ti ) / (1 + S i ) (2-9)

where S i is the sum of the ‘a’ and ‘b’ parameters for that particular person.  For a sample of size
J drawn from this distribution, the square of the standard error of the mean is Fi 

2 / J.  Also, the
expected value of the sample variance is

 si 
2  =  (J-1) Fi 

2 / J  . (2-10)

The within-person variance Fw
2 is the mean across persons of the si 

2.  In the limit of a large
simulated population, this is the same as the weighted average over Ti . 

Fw
2   =  I p(Ti) si 

2 d Ti 

        =   ((J-1)/J) I p(Ti) Ti (1 - Ti ) / (1 + S i ) d Ti  . (2-11)

This integral has a simple solution if the denominator can be factored out, which is possible
when the sum of the parameters of the beta distribution for the X-scores, which is S i,  is the same
for all persons (or all T i ).  Assume that such a solution exists that also meets all the other
constraints; that is, assume S i is equal to a constant S for all persons.   The remaining terms in
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the integral consist of the difference between the first and second moments of Ti about the origin. 
The first moment is the mean (which is 1/2), while the second moment about the origin is the
variance plus the square of the mean.  The variance of the  Ti is given by equation (2-8).  Hence

Fw
2   = [(J-1)/(J + J S)] [ 1/2 -  ( 1/4 + w 2 / (4 + 8 ") ) ]

        =  [(J-1)/(J + J S)] [1/4 - w 2 / (4 + 8 ") ] . (2-12)

Now consider the between-person variance Fb
2.   It can be interpreted as the second moment

about the overall mean :. (see equation 1-7).  Here the mean of the Ti is 1/2 by equation (2-7).  
For one value of Ti, if several persons share this Ti  then the expected variance in : i for this
subgroup is the square of the standard error of the mean.   Each person is assigned J  X-scores,
one per simulation day.  The standard error of the mean of these scores is given by  Fi  / J1/2, 
hence the expected variance in : i  for persons sharing the same Ti is Fi 

2 / J , which by equation
(2-9) is  Ti (1 - Ti ) / (J + J Si ).   To evaluate Fb

2 , the variance in : i about Ti must be converted
to the second moment of : i about the overall population mean of 1/2.  

Hence, 

(2nd moment of : i about 1/2 for given Ti)  = I p(:i) (:i -1/2) 2  d:i 
       
       = I p(:i) (:i

2 - :i +1/4) d:i 

       = I p(:i) :i
2 d:i   - Ti  +1/4 (2-13)

which follows since  I p(:i) :i d:i = Ti  and also  I p(:i) 1/4 d:i  =  1/4. 

The variance in :i is the second moment about the mean Ti , or 

Fi 
2 / J   =  I p(:i) (:i -Ti )2 d:i 

            = I p(:i) :i
2 d:i  - I p(:i ) 2 :i Ti d:i  + I p(:i ) Ti

2 d:i 

            = I p(:i) :i
2 d:i  - 2 Ti

2 + Ti
2 (2-14)

Substituting this expression into (2-13) gives 
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(2nd moment of :i about 1/2 for given Ti)  =  Fi 
2 / J  + Ti 2 - Ti  +1/4

      =  Fi 
2 / J  + (Ti - 1/2)2 

      =  Ti (1-Ti) / (J +J Si) + (Ti - 1/2)2 . (2-15)

For a large simulated population,  Fb
2  is the mean of this quantity over all Ti, namely

Fb
2  =  I p(Ti) [ Ti (1 - Ti ) / (J + J Si) + (Ti - 1/2)2 ]  d Ti (2-16)

where p(Ti) is given by equation (2-6).   This integral can be split in two; the first part is the
same integral as in (2-11), while the second part is just the variance in Ti, which is given by
equation (2-8).  As for Fw

2, the first integral can be solved by assuming Si is constant for all
persons.  So

Fb
2  =  [1/(J + J S)] [1/4 - w 2 / (4 + 8 ") ]  +  w 2 / (4 + 8 ") . (2-17)

Collectively, the X-scores for all the simulated persons should be as close to uniformly
distributed as possible, to ensure no net bias in the usage of the diaries.  In general this cannot be
achieved exactly, but it is possible to ensure that the X-scores collectively have the same mean
and variance as a uniform distribution, which for a uniform bounded by zero and one is

mean of X-scores = 1/2 , (2-18)

variance of X-scores = 1/12 . (2-19)

The mean will be 1/2 by the symmetry of the Ti distribution about 1/2.  The collective variance
of the X-scores is related to Fb

2 and Fw
2 by equation (1-8).  Hence

Fb
2  + Fw

2  =  1/12 . (2-20)

Substituting in the expressions from (2-12) and (2-17), one obtains

[1/(1+S)] [1/4 - w 2 / (4 + 8 ") ]  +  w 2 / (4 + 8 ") = 1/12 (2-21)

which when solved for S results in

S  =   2 / (1 - 3 w 2 / (1 + 2 ") ) . (2-22)

This result permits the specification of the parameters for the beta distribution for person 'i' from
which all their X-scores are drawn.  This distribution has a mean of  Ti.  Remembering that 
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S = a+b, equation (2-2) can be written as

a = S Ti =   2 Ti  / (1 - 3 w 2 / (1 + 2 ") ) .  (2-23)

Therefore

b = S-a  = 2 ( 1 - Ti  ) / (1 - 3 w 2 / (1 + 2 ") )  . (2-24)

From equation (2-6), the parameters w and " define the beta distribution from which all the
personal target scores Ti  are drawn.  This distribution must match the requirements of the D
statistic.  To simplify the equations, define a new parameter 

D#  =  3 w 2 / (1 + 2 ") (2-25)

and rewrite equation (2-17) in terms of this new parameter:

Fb
2  =  [1/(J + J (2/(1-D#)))] [1/4 - D# /12]  +  D# /12. (2-26)

which can be solved for D#  in terms of Fb
2

D#  =  (12 J Fb
2 -1 ) / ( J - 1) . (2-27)

Also, equation (1-9) together with (2-20) give

 D = Fb
2  / (Fb

2 + Fw
2 )  =  12 Fb

2  . (2-28)

Hence

D#  =  (J D - 1 ) / (J - 1 ) (2-29)

As J becomes large, D#  approaches D.  Therefore, D# may be seen as a modified D statistic that
accounts for the effects of short simulation periods.  Since the user specifies the simulation
length J and the diversity statistic D directly, D# is therefore also specified.  However, equation
(2-25) still contains two unknowns (w and ").  Thus, there is no unique solution.  

Let  R be the square root of D#

R  =  (D# ) 1/2 . (2-30)

It is found empirically that the following relationship between " and R gives a nearly uniform
distribution of X-scores:

" = 1 - (4/5) [4 R (1 - R)] 3 (2-31)
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In practice, the above formulas give a nearly uniform collective distribution of X-scores, and
hence a nearly uniform usage of the available diaries.  For example, suppose one year time series
are generated for a large number of simulated persons, using a pool of 100 diaries.  (For this
purpose, neglect the effects of altering diary pools throughout the year.)  Strict uniformity would
result in each diary being assigned an average of 3.65 times per person (365 days divided by 100
diaries).  The above formulae using beta distributions result in each diary being used between
3.50 and 4.0 times per person.  Furthermore, both the mean and variance of the key variable on
the assembled time series match the mean and variance seen in the diary pool.  If even better
uniformity in diary usage is desired, it is possible to use a smoothing function on the X-scores, at
a slight cost in departing from strict beta distributions.  This is usually not necessary and is not
detailed here. 

Unlike the other equations in this derivation, there is no necessity to use equation (2-31) when
implementing this method.  Any functions for " and ‘w’ that produce valid beta distributions and
satisfy equation (2-25) may be used.  Another choice which is simpler than (2-31) is 

" = 1 (2-32)

whereupon equation (2-25) reduces to 

w2 = D# . (2-33)

This choice results in a uniform distribution of the targets Ti  between the limits (1/2-D#/2) and
(1/2+D# /2).  However, while the D statistic is matched, and the mean and variance of the X-
scores match those of a uniform distribution, overall the X-scores are slightly less uniformly
distributed than is obtained by using equation (2-31).   The choice of functions for " and ‘w’
could be based on preferences for statistics other than D;  for example, one might wish to match
statistics on the distribution of the Ti  targets themselves.

3)  Method of reordering the diaries to match a target value of  A

The second step in the proposed method for constructing longitudinal activity diaries is the
reordering of the selected X-scores to match a target value for ‘A’.    It should be noted that
autocorrelation is hard to measure on short time series.  Box, Jenkins and Reinsel (1994)
recommend a minimum of 50 data points to adequately characterize the autocorrelation of a time
series.  The method described below does a reasonable job for 30 days or more.  The method can
be applied to shorter time series, but the results will not match the target autocorrelation as
closely as for longer simulations.  
  
For purposes of autocorrelation, the ranks that matter are the ranks relative to the other days in
the same time series.   These ranks may differ substantially from the original X-scores.  Note that
the X-scores are uniformly distributed across persons and hence the mean (across persons) is 1/2,
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but the mean within a time series for a given person is :i .  Hence the ranking of X-scores across
persons may differ substantially from the ranking within persons. 

To start the process of targeting the desired overall autocorrelation A, assign a target
autocorrelation ai to each simulated individual.  These targets can be drawn from any distribution
that has a mean of A, provided that all ai are between -1 and 1.  

Sort the X-scores within each simulated individual’s time series and rank them from smallest to
largest.  Suppose there are J days in the simulation period.  Recall that some extra X-scores
(approximately 3%)  should be selected for each person.  The extra ones are needed to prevent a
severe loss of degrees of freedom towards the end of each individual’s reordering.   Let K be the
number of X-scores selected per person, including the extras.  When sorted and ranked, the set of
available ranks will be the integers from 1 to K.   For example, rank 1 will correspond to the
lowest of the X-scores assigned to this person, rank 2 is the second lowest X-score, and so on.  
Ties will not generally occur, as the X-scores are real numbers selected from continuous
distributions; ties are ignored in practice.  The goal is to reorder these ranks in a stochastic
manner that will (on average) reproduce the requested autocorrelation.  The reordering process
will stop once J values are selected, any extras are discarded.

Let Rj be the rank assigned to day ‘j’ by this reordering process.  The lag-one autocorrelation ‘a i’
of the time series for person ‘i’ is the ratio of the lag-one covariance to the variance, or

a i   =   E [ (R j - D) ( Rj+1 - D) ]  /  E [ (R j - D)2 ] (3-1)

where D is the mean of the ranks.  Here E [arg] means the expected value of  the argument ‘arg’. 
There is a slight difference in the autocorrelation of the entire set of K ranks as compared to the
autocorrelation of the J ranks of the selected subset, although this difference is quite small for J
close to K.  One difficulty is that while the latter is a measurable output from the diary assembly
process, it is the former that is accessible during the reordering process.   Thus, the ranks, means,
and variances in equation (3-1) and subsequent equations apply to the full list of K values.

The denominator in equation (3-1) is the variance of the set of integers from 1 to K, which is 
(K2-1)/12.   Hence

a i   = (12 / (K2 -1))  E [(R j - D) ( Rj+1 - D) ]. (3-2)

The expectation value in equation (3-2) can be evaluated if we have the conditional probability
p(Rj+1 | R j ); that is,  the probability for each rank being chosen on day ‘j+1', given the rank R j
chosen on day ‘j’.

The conditional probability distribution p(Rj+1 | R j ) is a discrete distribution, since the set of
ranks is discrete.  However, the number of ranks is often in the hundreds, and it is more
convenient to use a continuous probability distribution.   Thus, a beta distribution for p(y|x) is
developed,  where ‘x’ and ‘y’ are continuous variables ranging from zero to one that are mapped
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onto the ranks:

 R j = ceil(K x),    and  Rj+1  = ceil(K y) (3-3)

where ‘ceil’ is the ceiling or least integer function that rounds up to the next integer.  To invert
these relationships, note that on average the ceiling function adds 1/2 to the argument, so the
mean values of x and y that correspond to given ranks are

x = (R j -1/2) / K,   and   y = (Rj+1 -1/2) / K (3-4)

We wish to select the parameters for a beta distribution that give the selection probabilities for
Rj+1 , based on the value of R j  and the other constants in equation (3-2).  The expected value
appearing in equation (3-2) is given by weighting the sum over all outcomes by the probability
of occurrence:

E [(R j - D) ( Rj+1 - D) ] =  '  '  (R j - D) ( Rj+1 - D) p(R j) p(Rj+1 | R j) (3-5)

where one sum is over all R j from 1 to K and the other is over all Rj+1  from 1 to K.  All values
for R j should be equally likely, that is, p(R j) =1/K for all cases.  Replace the sum over all Rj+1  by
an integral over all y, with Rj+1  replaced by (Ky+1/2):

E [(R j - D) ( Rj+1 - D) ] =  (1/K)  ' (R j - D)  Ip(y|x) (Ky+1/2- D) dy (3-6)

The integral over ‘y’ consists of two parts.  Factoring out the K, the first part is the mean value
of ‘y’ for the given ‘x’, which can be symbolized as E(y|x).   The second part equals (1/2-D),
since the integrand is independent of y, and Ip(y|x) dy = 1.  Also note that for the integers from 1
to K, the mean is D = (K+1)/2, so (1/2-D) = -K/2.  Thus,

E [(R j - D) ( Rj+1 - D) ]  =  ' (R j - D) ( E(y|x) - 1/2) (3-7)

The value of E(y|x) will depend on the parameters of the beta distribution.  As in section  2, let
‘a’ and ‘b’ be the parameters of the beta distribution and let S = a+b.  Consider the following:

a = S/2 - S w/2 + S w x . (3-8)

Then 

 b = S-a  =  S/2 + S w/2 - S w x. (3-9)

The mean of a beta distribution bounded by zero and one is given by equation (2-2), therefore

E (y|x) = a / (a+b) = a /S =  1/2 - w/2 + w x . (3-10)
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Thus, equation (3-7) becomes 

E [(R j - D) ( Rj+1 - D) ]  =  ' (R j - K/2 - 1/2) w (x-1/2). (3-11)

Replacing x by (R j -1/2)/K and noting that the sums evaluate to 

' R j
2  = K (K+1) (2K+1)/6,    ' R j  =  K (K+1)/2,   ' 1 = K, (3-12)

 then equation (3-11) can be expanded and evaluated to give

E [(R j - D) ( Rj+1 - D) ]  = w (K2 - 1) /12. (3-13)

With this choice of the beta distribution, equation (3-2) reduces to the very simple form

w = ai. (3-14)

To completely specify the parameters of the beta distribution, a form for the sum of parameters 
S = a+b  must be given.   The second requirement is that the distribution of ‘y’ be essentially
uniform, when averaged over all values of ‘x’.   In practice, this condition cannot be met exactly. 
Instead, a reasonable match can be made by matching the first few moments of the distribution
for ‘y’ to the moments of a uniform distribution.

The kth moment about zero of a uniform distribution from zero to one is
    
m k =  I x k  p(x) dx  =  1/ (k+1) (3-15)

since p(x) =1 for a uniform.  The moments of the ‘y’ values are

E(y k) = I I  y k p(y|x) p(x) dy dx

= Ip(x) dx   I y k p(y|x) dy . (3-16)

The second integral is the kth moment of the beta distribution p(y|x).  The first moment is given
by equation (3-10).  The second moment of a beta distribution (Johnson, Kotz, and Balakrishnan,
1994) is

M 2  =  a (a+1) / ( S (S+1) )
         
        = (S/2 - S w /2 + S w x ) (1+S/2 -S w/2 + S w x) / [S (S+1) ]

        = [ (1-w)(2+S-S w)/4 + (w + S w - s w2 ) x + S w2 x2 ] / (S+1). (3-17)
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Hence the first moment of ‘y’ is

E(y ) =  Ip(x) (1/2 - w/2 + w x) dx

         =  1/2 - w/2 + w (1/2)

         =  1/2 (3-18)

which agrees with the first moment m1 of a uniform (0,1) distribution.  For the second moment,
equation (3-17) must be integrated over x from zero to one, giving

E(y 2 )  = [(1-w)(2+S-S w)/4 + (w+S w - S w2)/2 + S w2/3 ] / (S+1)
  
                      = (6 + 3 S + S w 2 ) / (12 + 12 S) (3-19)

Matching E(y2) to the second moment m2 of a uniform (0,1) distribution (which is 1/3) and
solving for S gives

S = 2 / (1- w 2) (3-20)

Matching the third moments m3 = E (y3) results in the same relationship S = 2 / (1- w 2).  
Moments higher than this generally will not match.

To summarize,  the parameter values should be

w = a i 

S = 2 / (1- w 2). (3-21)

The preceding development is in terms of the target autocorrelation ‘a i’ that is specific to one
individual ‘i’.  The population statistic A is the mean of the ai across persons.   An examination
of the data used in Xue et al. (2004) indicates that people within the same cohort may differ
greatly in their personal autocorrelations.  For four different choices of the key variable, the
standard deviation of ai across persons was 0.20.   A symmetric beta distribution centered on A
with a standard deviation of 0.20 was chosen for the results reported here.  The bounds on this
beta are (A-1/2) to (A+1/2), provided these do not extend past 1 or -1.   If A is less than -1/2 or
greater than 1/2, the beta distribution is  “squeezed” symmetrically until the bounds are within
limits.  Other choices of the key variable or data from other studies may lead to alternative
choices for the distribution of ‘a i’ .
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The proposed method could allow differing autocorrelations for different points in the time
series.  For example, suppose that there is one autocorrelation for the case where both days ‘j’
and ‘j+1’ are of the same day-type, and another if the days are of differing day-types.  The
average autocorrelation is the weighted average.  The user would specify the overall target 
autocorrelations Aj for each day-type.  For each individual, a target a i j is required for each Aj.  
Since a new beta distribution is generated every day, one merely replaces a i by a i j in equations
(3-21), so that ‘w’ and ‘s’ become functions of ‘j’.   Note that there are few data sets extensive
enough to determine if this effect is significant.   Furthermore, the stability of each
autocorrelation target will decrease when it is applied to fewer and fewer days.  Hence, the
derivation does not emphasize this possibility.

4) Mapping the X-scores back to activity diaries

For the first day of the simulation, select any of the ranks from 1 to K at random.  For each
subsequent day, a beta distribution with parameters determined by (3-21) and (3-8) is used to
select the next rank.  The beta distribution will return a real number between zero and one; call
this value ‘y’.  Convert this to a rank R from 1 to K by

Rj+1  = ceil(K y) (4-1)

where ‘ceil’ is the ceiling function.   The only complication is if this rank has already been
assigned to a prior day, in which case the nearest rank that has not already been used is assigned
instead.  The X-score corresponding to this rank is recorded (call it xj+1 ), and the assigned rank
is used to adjust the parameters of the beta distribution to be used for the next day.  Continue
until J values have been assigned.   
 
To connect the time series of X-scores with actual diaries, the pool of available diaries for each
day must be identified.  If there are Dj+1 available diaries in the pool for simulation day ‘j+1’, 
then use the diary at position d j+1  in the sorted list of available diaries, where 

d j+1  =   ceil(Dj+1  xj+1 ). (4-2)

5) Possible Modifications

There are several reasons why the derivation of the parameters needed to match a target
autocorrelation yields an approximate, but not analytically exact, solution.  First, and most
importantly for short simulations, the correspondence between the discrete nature of the ranks
and the continuous beta distribution can become a difficulty.  Mathematically, this means that
larger segments of x and y space map onto a single rank.  The implicit assumption in the
derivation is that ranks can be mapped to the midpoint of these segments, and vice versa.  This is
a good approximation as long as the probability is not rapidly changing within each segment,
which is the case when each segment is small (meaning many days in the simulation).
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Secondly, the beta distribution for reordering may select the same rank on two days in a row, in
which case the second rank must be shifted away from the first, which lowers autocorrelation.  In
fact, anytime selected rank Rj+1  has been used before, the result must be shifted to the nearest
unused rank.  However, if this is not the same rank as Rj, then the shift is equally likely to move
the rank closer to Rj as moving it further away, so the net effect on autocorrelation is small.

Additionally, near the end of the simulation, there are relatively few unused ranks, and in
practice these ranks may be near to each other.  So when examined in detail, the time series may
show a tendency for autocorrelation to increase toward the end.

The final point is that within each time series the rankings for the J selected X-scores will differ
from the rankings with respect to all K of the X-scores.  Usually, this is not a problem since the
mean and variance of the subset are close to the mean and variance of the larger set.  In
exceptional cases, the autocorrelation measured on the original rankings (based on K) may differ
from the autocorrelation based on the rankings within the subset; this could happen when the
omitted X-scores are congregated near one end of the ranking scale.

Accounting for the above factors may be possible by modifying the proposed method, though at
a cost of complicating the approach.  However, in total, these effects tend to be small for
simulations over 30 days in length.  Also, some of the potential problems have a tendency to
cancel out.  It is found in simulations that D and A are usually within 0.02 of the requested value,
an excellent agreement. 




