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Protection Agency, Research Triangle Park, NC. It has been reviewed by ManTech Environmental
Technology, Inc., and approved for publication. Mention of trade names or commercial products
does not constitute endorsement or recommendation for use.



TR-4423-03-08

v

Contents

Section Page No.

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 Current Equivalency Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3 Data Quality Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Computing the Gray Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Routine Sampler Performance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    4 Current DQO and Equivalency Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Measurement Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Relating DQO and Equivalency Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5 Common Measurement Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Estimating Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Evaluating Equivalency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    6 A Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendix A: R Code for Data Simulation and Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . A-1

Tables

Table Page No.

    1 Basic Sample Design for Equivalency Tests of Class I, II, and III Samplers . . . . . . . . . . 3

    2 DQO Gray Zone Maximum Relative Precision and Bias . . . . . . . . . . . . . . . . . . . . . . . . . 6

    3 Results from 1000 Simulations of Measurement Error in Current 1 in 6                    
Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



TR-4423-03-08

1 There is also a 24-hour standard that is of minor interest in this WA.
2 Five one hundredths are added to account for rounding error.
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1. Introduction

The goals of this work assignment (WA) were to determine and characterize the statistical
relationship between current EPA equivalent method qualification requirements and air quality
monitoring data quality objective (DQO) requirements for sampling once every six days (1 in 6
sampling), and to extend this relationship in a compatible way to sampling frequencies of once every
three days (1 in 3 sampling) and daily (1 in 1 sampling). In particular, the 1 in 1 sampling frequency
corresponds to that used by the PM2.5 continuous methods. As a result of efforts to understand the
relationship, it was concluded that the relationship is indirect due to the dissimilar and largely
incompatible assumptions about measurement error between the two systems. Therefore, we propose
that a common measurement error model in both equivalency and DQO testing be adopted. Given
a common model, the desired relationship between the two sets of requirements will naturally
follow.

The national PM2.5 monitoring network consists of a network of air-quality samplers used
for determining compliance with federal 2.5-micron particulate matter standards. Compliance exists
at a monitoring site if the three-year sample average1 of measured PM2.5 concentrations is less than
15.05 :g/m3.2 A variety of quality control (QC) requirements are associated with this network, and
we can classify these as follows:

1. Equivalent method requirements. A sampler model can be certified for use within the
PM2.5 network in one of two ways. The first, a non-statistical approach to certification,
is that the sampler be designed according to specified engineering standards. Samplers
of this kind are known as federal reference method (FRM) samplers and may be certified
by EPA for use in the network upon demonstration of adherence to all FRM
specifications. The second approach is statistical and is available for those samplers
whose designs do not exactly comply with the FRM specifications. These samplers are
categorized as Class I, II, or III depending on their divergence (increasing) from the
FRM specifications, with Class III applicable to the continuous methods of special
interest here. For each of these classes, there is (or will be developed) a specific
equivalency test, in which a sampler that passes the test is considered a federal
equivalent method (FEM) sampler and may then be used within the PM2.5 network. The
test itself consists of a comparison of daily readings at one or more test sites between
some number of candidate samplers and FRM samplers to determine how closely the
candidate sampler measurements correspond to those of the FRM samplers.

2. Data quality objectives (DQOs). Associated with the PM2.5 network are DQOs used to
evaluate network performance in two ways:

a. A site is in compliance if its three-year average particulate matter concentration is
less than 15.05 :g/m3. The DQOs recognize that some uncertainty is associated with
this decision and so provide a simulation-based statistical methodology (U.S. EPA,
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3 The relative bias b of estimator  of  is defined according to  where  is the expectation$θ θ [ ]E b$ ( )θ θ= +1 [ ]E $θ
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4 The relative precision  of random variable X of mean  and standard deviation  is given by .τ μ σ στ
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=

2

2002) to compute a “gray zone” interval, which covers 15.05 :g/m3. If a three-year
average lies within the interval, then the compliance decision is somewhat weak. The
current DQO gray zone has been developed for 1 in 6 samplers with FRM sampler
characteristics, a maximum relative bias3 of 0.1, and maximum relative precision4

of 0.1.

b. The DQOs require that the performance of the network as a whole be monitored to
ensure that samplers and laboratories are providing readings of adequate relative
precision or relative bias. The gray zone is developed based on certain allowable
ranges of relative precision and relative bias, and so a system of collocating a field
sampler with a second sampler has been developed to estimate their values at a site
or aggregate site level. If estimated values at a site or aggregate level are outside of
allowable ranges, then further action may be taken.

This report is primarily concerned with parts 1 and 2a, aiming to first understand any
relationship between the sampler performance requirements used to construct the 1 in 6 gray zone
and the current equivalency requirements for 1 in 6 candidate samplers. It then aims to provide
guidelines for equivalency testing of 1 in 3 and 1 in 1 sampling based on any understanding gained,
as well as proposed sampler requirements for maintaining acceptable gray zones with 1 in 3 and 1
in 1 sampling. As described in this report, these guidelines require that equivalency testing
methodology be changed so that its model for sampler measurement error is compatible with the one
used in constructing DQO gray zones.

This paper is organized as follows: Section 2 provides a more detailed background on the
equivalency testing approach. Section 3 presents the background for the DQOs, both in constructing
the gray zone and in testing field samplers. Section 4 offers a statistical comparison of the DQO and
equivalency testing. Section 5 describes issues in developing a common framework for the two
approaches. Section 6 provides the suggested approach.
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be discarded if enough of a certain type was already obtained.  It might be suggested that a policy of keeping all data
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2. Current Equivalency Requirements

Equivalency requirements are those requirements that candidate samplers must satisfy to
obtain FEM status as a result of an equivalency test against an FRM sampler. Candidate samplers
are first classified as Class I, II, or III, and then, depending on the class, PM2.5 collocated
measurements are collected at a specific number of test sites, with a certain number of reference and
candidate samplers per site, for a minimum number of days.

The sample design for each of the three classes of candidate samplers is given in Table 1.
As is evident from the table, there is a reasonable amount of variation in sample design according
to class. That is, the number of sites selected, number of reference samplers per site, number of
candidate samplers per site, and number of measurement days per site can all vary by sampler class.

Table 1. Basic Sample Design for Equivalency Tests of Class I, II, and III Samplers

Class
Number
of Sites

Reference
Samplers per Site

Candidate
Samplers per

Site
PM10 Samplers

per Sitea

Days of
Measurements

per Site
I 1 3 3 0 10
II 2 3 3 1 10
III (4)b (2) (2) 0 (120)c

aPM10 samplers are used to ensure that the Class II sampler data satisfy PM2.5/PM10 ratio requirements.
bValues in parentheses are proposed.
cFor continuous candidate samplers, the recorded reading is the average of 1-hour readings.

For data collected according to one of the above designs to be considered acceptable, it must satisfy
the following requirements:

1. Daily site means of the reference method samplers

2. Daily site standard deviations and relative precisions for reference methods

3. Days of the year on which sampling can occur

Concerning requirement 1 for the means of the daily reference method site averages, it is
required that enough daily means fall both above and below a certain value. For example, with a
Class I sampler, means must fall within a range of 10–200 :g/m3, and of the required minimum total
of 10 days’ measurements from one site, at least three means must be below 30 :g/m3 and three
means above that level. This requirement ensures that means are neither all high nor all low, as
might happen if a test was conducted during a period of minimal atmospheric variation.5

Concerning requirement 2 for the daily site standard deviations and relative precisions, these
depend on whether a daily site reference average is above or below a specified amount. If it is above
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the amount, then the relative precision must satisfy a requirement. If it is below the amount, then the
standard deviation (precision) must satisfy a separate requirement. For example, with a Class I
sampler, if a daily reference average exceeds 40 :g/m3, then the percent relative precision must be
less than 5%; if the daily site average is less than 40 :g/m3, then the standard deviation should be
less than 2 :g/m3. The use of standard deviation for lower valued means is due to the large variance
of relative precision in these cases. In either case, this requirement might be viewed as a method for
outlier detection and removal.

Finally, the temporal requirements for the (proposed) Class III methods are that at least five
measurements be collected per month per site, with 30 measurements per quarter. Class III methods
do not have any range requirements of variety, so these temporal requirements play that role for
these methods.6

Once a data set is considered acceptable, the equivalency of the candidate and reference
method can be tested. This equivalency is established if at each site statistics based on daily mean
concentrations of candidate and reference methods fall within specified ranges. More specifically,
if there are I sites, J samplers per site, and K measurements per sampler per site, and if 

 is the PM2.5 measurement at time k for reference sampler j at site i, and*
ijkX

 is the PM2.5 measurement at time k for candidate sampler j at site i,ijkX
then at site i one would compute the reference means  and the candidate means  at time k.*

ikX ikX
The candidate sampler is then equivalent if for each site i = 1, …, I

! a least squares or simple linear regression of candidate means on reference means has
intercept estimate  in the interval  and slope parameter  in$αi ˆ1 1iα− ≤ ≤ ˆ

iβ
, andˆ0.95 1.05iβ≤ ≤

! the Pearson’s sample correlation coefficient  of the correlation of the  and theˆ iρ
*
ikX ikX

satisfies .ˆ 0.97iρ ≥

These are the equivalency requirements for 1 in 6 samplers.
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* ( , )= 0 2τ

5

X b Zk k k= + +( ) ,1 μ

3. Data Quality Objectives

The DQOs for the PM2.5 network have two important uses: (1) to evaluate the strength of
compliance decisions using a gray zone and (2) to allow continual monitoring of network
performance in the field. A brief overview of each is now provided.

3.1 Computing the Gray Zone

The gray zone is computed using a simulation-based approach that incorporates both
population and measurement error models. The population model generates the true daily mean,
while the measurement error model adjusts the daily true mean for error associated with the sampler.
The current gray zone for compliance decision is the interval (12.2,18.8). A site is either in or not
in compliance, depending on which side of 15.05 :g/m3 its three-year site means lie, but this
compliance decision is not considered strong if the three-year average also lies within the gray zone.

The population model holds that daily mean concentrations at a site follow a sinusoidal curve
with an annual period of 1. Highest particulate matter concentrations occur in the summer, and the
lowest in the winter. The sine curve has parameters chosen according to an analysis of observed
particulate readings in the current PM2.5 network. To allow for population variability, the value from
the sine curve for a given day is multiplied by a log-normally distributed error of mean 1 and
standard deviation 0.8, thereby providing the day’s true PM2.5 value.

The DQO simulation adjusts the true daily PM2.5 values for measurement error. If  is thekμ
true PM2.5 value at time k, the final recorded value is then equal to 

where the  are independent, normally distributed , with variancekZ 2~ (0,[(1 ) ] )k kZ N b τμ+
depending on the true daily PM2.5 value, as well as the relative bias b, and relative precision J.7 In
the simulations, a relative bias of at most b = 0.1 and a relative precision of at most J =0.1 was
assumed. These values are considered reasonable performance standards for the PM2.5 samplers and
are the DQO (gray zone) requirements for 1 in 6 samplers.

Multiple simulations of the above model provided a gray zone interval of (12.2, 18.8). The
bounds of this interval were chosen to have the following property: If the true yearly population
mean particulate matter concentration equals the upper bound, then the probability of simulating a
three-year average less than 15.05 :g/m3 is 5%, and if the true yearly population mean equals the
lower bound, then the probability of simulating a three-year average greater than 15.05 :g/m3 is 5%.

Increasing the sampling frequency from 1 in 6 to 1 in 3 and 1 in 1 allowed the relative bias
requirement to be relaxed and yet still maintain the same gray-zone interval. Table 2 gives the
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current and proposed relative biases and precisions based on gray-zone simulation of 1 in 6, 1 in 3,
and 1 in 1 sampling.

Table 2. DQO Gray-Zone Maximum Relative Precision and Bias

Sampling Frequency Relative Precision Relative Bias
1 in 6 0.1 0.1
1 in 3 0.1 0.13
1 in 1 0.1 0.18

In this report, one of the goals is to provide compatible equivalency testing requirements for these
proposed 1 in 3 and 1 in 1 gray-zone requirements.

3.2 Routine Sampler Performance Requirements

An additional DQO for the PM2.5 network is that over time both PM2.5 samplers and
laboratories continue to perform at acceptable levels. Performance checks occur at both site and
aggregate levels, with the performance parameters of interest being the two parameters of the DQO
measurement error model: relative precision and relative bias. 

To check network performance with respect to relative bias, four collocated measurements
are taken at one quarter of the sites each year. The chosen sites rotate so that over four years, all sites
in the network are assessed. For these collocated samplers, daily estimates of relative bias are
computed and then averaged over the quarterly estimates to obtain a yearly estimate. Yearly
estimates are then further aggregated and averaged up to reporting level to check for biases within
a network. Due to the limited sample size per site, inferences are only made at the aggregate level
as a means of checking method performance.

Relative precision of network samplers is evaluated through having a fixed one-quarter of
all sites equipped with a permanent collocated sampler. Daily estimates of precision based on the
paired measurements are averaged by year and/or averaged by site for reporting regions. If averages
are not over time, then comparisons may be made via a control chart approach.
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* * *(1 )ijk ij ik ijkX b Zμ= + +

(1 )ijk ij ik ijkX b Zμ= + +

4. Current DQO and Equivalency Approaches

This section describes similarities and differences between the measurement error model
used for equivalency testing and that used to obtain the DQO gray zone. This comparison of models
may allow for statements to be made about what equivalency testing requirements should be for 1
in 3 and 1 in 1 sampling. However, the conclusion is that this is difficult at best, and, for this reason,
it is suggested that a common measurement error model be introduced for both purposes. Since the
DQO measurement error model is the more realistic model (as described below), it is suggested that
the statistical approach for equivalency testing be based on this model. 

The section has two main parts. The first is a description of the measurement error models
in each case, and the second is a discussion of how the requirements in each case might be related.

4.1 Measurement Error Models

The equivalency testing approach, as described in section 2, does not have an explicit
measurement error model. For a candidate sampler to obtain FEM status, sample statistics based on
least squares and correlation analysis must satisfy certain range requirements. However, we can
consider the least-squares approach to imply a measurement error model, namely, the simple linear
model, which implies two assumptions:

1. The  reference means are measured with certainty.X
J

Xik ijk
j

* *= ∑1

2. The candidate means are independent, normally distributed , where 
2

*~ ( , )ik i i ikX N X
J
σα β+

2σ
is the variance of the individual sampler measurements.

The measurement error model for the DQO gray-zone simulations was given in section 3.1. Adding
indices to the observations for site, sampler, and time gives 

where the  and ,  independently.* * * 2~ (0,[(1 ) ] )ijk ij ij ikZ N b τ μ+ 2~ (0,[(1 ) ] )ijk ij ij ikZ N b τ μ+

Expressing the DQO model in terms of site averages gives the following:

1. The reference means  are independent, normally distributed*
ikX

, where  is the mean of the relative biases of
2

* * * 2 * 2
2~ ((1 ) , (1 ) ( ) )ik

ik i ik ij ij
j

X N b b
J
μμ τ+ +∑ *

ib

reference samplers at site i, and  is the precision of sampler j at site i.*
ijτ
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precisions among a given sampler type are equal (i.e.,  and  for all i,j) are made. Under theseτ τij = τ τij
* *=

assumptions, the DQO site sample means have the following:

1. The reference means  are independent, normally distributed .X ik
* ( )

X N
Jik ik

ik* ,
*

,=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟μ

μ τ
2

2. The candidate means  are independent, normally distributedX ik

.( ) ( )X N b
J

bik i ik
ik

ij
j

≈ + +
⎛

⎝
⎜

⎞

⎠
⎟∑1 1

2

2

2 2μ
μ

τ,
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2. The candidate means  are independent, normally distributedikX

, where  is the mean of the relative bias of
2

2 2
2~ ((1 ) , (1 ) )ik

ik i ik ij ij
j

X N b b
J
μμ τ+ +∑

candidate samplers at site j, and  is the precision of sampler j at site i.ijτ

It is clear that the two measurement error models are very different.8 Crucial assumptions
underlying the equivalency model are that measurement errors for candidate samplers are of constant
variance and that reference sampler site daily means are not random. In contrast, the DQO model
allows for randomness in both candidate and reference sampler measurements, and allows the
variance for these measurements to depend on the mean. For samplers of the PM2.5 variety, having
the variance depend on the mean is considered a more realistic assumption.

Although the equivalency assumptions do not entirely hold in practice, they do lead to a
simple comparison of reference to candidate samplers under 1 in 6 sampling assumptions. However,
with the desire to extend equivalency comparisons to 1 in 3 and 1 in 1 sampling using the DQO
requirements as a guide, the difference between the approaches becomes more important.

In making the extension from the current 1 in 6 DQO requirements to the equivalency testing
requirements, as a guide we might ask how the current sets of requirements in each case relate, even
though the measurement error models are different. This is the topic of the next section.

4.2 Relating DQO and Equivalency Requirements

Finding relationships between the DQO and equivalency requirements is not simple due to
the differing underlying parameterizations and measurement error models. However, since a project
goal is to outline existing relationships, in this section we will attempt to do so. The first step is to
ask how a given parameterization in one model might be interpreted in terms of the other. Given an
interpretation, we might then ask how the current requirements relate. Since the proposed 1 in 3 and
1 in 1 DQO requirements are to be used to find corresponding equivalency requirements, we begin
by considering how the DQO requirements might be interpreted for equivalency testing.

The DQO relative bias parameter is represented within the equivalency testing error model
through its contribution to the slope of the regression line
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*

(1 )

(1 )

ij
j

i
ij

j

b

b
β

+
=

+

∑
∑

*

* * * *

ˆˆ XXXX
i i

XX X X X X

S S
S S S

ρ β= =

That is, the slope at site i is the ratio of the average of the multiplicative biases for candidate and
reference samplers. The equivalency test requires that the estimate of this ratio fall between 0.95 and
1.05. Since the DQO model requires a sampler relative bias of no more than 10%, it follows that if
only one sampler of each kind were compared,9 the regression slope would allowably fall within
(.81,1.22) since the minimum allowable is 0.9/1.1=.81 and the maximum is 1.1/0.9=1.22. These
bounds remain the same as additional samplers are added to the sites (provided there are equal
numbers of both kinds). If the additional assumption is made of reference samplers having zero
relative bias, then the ratio is simply the average of multiplicative biases for the candidate samplers.
In this case, the DQO minimum for one sampler is 0.9 and the maximum is 1.1, which is already
outside of the equivalency bounds. The equivalency standards for relative bias appear to be more
conservative than those required for the DQO gray zone.

In contrast to relative bias, there does not appear to be a statistic within the equivalency tests
that either directly or indirectly estimates the DQO relative precision. Neither the sample correlation
coefficient nor the estimated regression intercept contributes this information. Also, the daily site
observations are reduced to a daily mean, and the data are screened so that daily site level reference
sample variances are no more than a given amount. Both of these steps remove some of the sampler-
specific variation.

The equivalency test sample correlation coefficient is a function of the estimated slope and
the sums of squares for reference and candidate samplers, that is, 

where , , and  are the sums of squares and cross products for the daily site means.XXS * *X X
S *XX

S
The ratio of sums of squares is equal to the ratio of sample variances, and so the slope and this ratio
can be considered instead of the slope and the correlation coefficient. The requirement that the
sample correlation coefficient be greater than or equal to 0.97 is therefore also a joint requirement
on the fitted slope and the ratio of sample variances of the candidate and reference means. These
sample variances estimate population variability of PM2.5 measurements for those days included in
the sample, however, and not sampler precision.

The estimated regression intercept of the equivalency test shifts the fitted regression line
from the origin and allows for contamination within the reference and candidate samplers. As such,
it might be viewed as the average of the sum of the contaminations for both groups of samplers. For



TR-4423-03-08

10

example, if the candidate samplers consistently have a contamination of 1 :g/m3, while the reference
samplers have zero, we might expect the regression intercept to equal 1.

It appears, therefore, that the above comparisons provide little guidance for extending current
requirements in a compatible way for 1 in 3 and 1 in 1 sampling. The relationships appear to be
indirect, at best, and, furthermore, since the DQO and equivalency requirements have historically
developed independently, there remains the question of the extent to which any existing relationship
should matter. Since the proposed 1 in 3 and 1 in 1 DQO requirements (see Table 2) are to be used
to develop compatible 1 in 3 and 1 in 1 equivalency requirements, we suggest instead changing the
equivalency testing measurement error model to be the same as that used in the DQO process. Doing
so will make the extension clear and direct.
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* * *(1 )ijk ij ik ijkX b Zμ= + +

(1 )ijk ij ik ijkX b Zμ= + +

5. Common Measurement Error Model 

The difficulties encountered in section 4 suggest that a common measurement error model
be used for both the DQO gray zone and the equivalency testing. This model will be based on the
current DQO gray-zone model, which has more realistic assumptions about the measurement error
process. 

5.1 Model and Assumptions

From section 4.1, the DQO gray-zone measurement error model as applied to equivalency
testing can be written as

where , and . Assumptions are that* * * 2~ (0,[(1 ) ] )ijk ij ij ikZ N b τ μ+ 2~ (0,[(1 ) ] )ijk ij ij ikZ N b τ μ+

! both  and  are measured with error;*
ijkX ijkX

! error standard deviation increases multiplicatively with the mean;

! bias is multiplicative; 

! errors are independent and normally distributed; and

! relative bias and precision are sampler specific.

However, in practice, it is reasonable to assume that candidate and reference samplers have common
relative precisions, that is,  and  for all i,j. It is also reasonable to assume that* *

ijτ τ= ijτ τ=
reference samplers have zero relative bias, that is,  for all i,j. The zero relative bias* 0ijb =
assumption will statistically identify the  and is in keeping with the observed performance ofijb
reference samplers. 

5.2 Estimating Model Parameters

The DQO measurement error model is a multiplicative error model. That is, the additive form
of the model given earlier can be written as
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where in this case  and ,  independently. This assumes zero* * 2~ (1, ( ) )ijkZ N τ 2~ (1, )ijkZ N τ
relative bias for the candidate samplers and common precisions for candidate and reference
samplers, as described earlier.

Since the  and  are normal random variables, there is a small but positive probability*
ijkZ ijkZ

that they might take negative values, in which case  and/or  would lie outside of their*
ijkX ijkX

observable range. Furthermore, it is likely that , and, , in which case the normal* 0.1τ ≤ 0.1τ ≤
distribution for the errors will be closely approximated by a lognormal distribution. That is,

 and .* * 2(1, ( ) )ijkZ LN τ≈ 2(1, )ijkZ LN τ≈

Logarithms can now be taken, and a reparameterization done:

(1.1)

(1.2)

where  and , independently. The model can now be fit using( )ε σijk NN*
*,≈ 0 2 2(0, )ijk NNε σ≈

weighted (or generalized) least-squares, although to do so requires estimates for the  and 2
*Nσ 2

Nσ
to obtain the weights.

The estimation of  is relatively straightforward, as there are replicate reference2
*Nσ

observations at each site and time. Since the reference samplers are assumed unbiased, site level
reference sample variances  can be estimated for each i,k, and then an unbiased estimate of2

*,N ikS
 obtained as their average:2

*Nσ

The  are independent, identically distributed (by model assumption), and2
*,N ikS



TR-4423-03-08

13

is distributed as a chi-square  random variable with (J-1)IK degrees of freedom. This2
( 1)J IKχ −

distribution can be used to construct confidence intervals or hypothesis tests for .2
*Nσ
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( )
2

* 2 *ˆ N
ijk ik Nj

Var Y
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σθ σ− = +

� ( )
2

2 * *
,

ˆˆˆ N
N ij ijk ikj

Var Y
J

σσ θ= − −

2 2
,

1ˆ ˆN N ij
ijIJ

σ σ= ∑

The estimation of the candidate error variance  must be done differently, as unlike for2
Nσ

the reference observations, the replicate candidate measurements at each site estimate different
means due to the candidate-specific relative biases. To estimate , an estimate of  based solely2

Nσ ikθ
on the reference samplers is used. This estimate is obtained as the average of the reference sampler
readings at a given site and time . The variance of the estimated difference* *1

îk ijk
j

Y
J

θ = ∑
*ˆ

ijk ikY θ−
is equal to

since the reference and candidate observations are independent. For sampler j at site i, this variance
can be unbiasedly estimated using the sample variance of the differences, and a sampler-specific
estimate  of the candidate variance then be obtained as2

,ˆ N ijσ

.

Since this is a difference in variance estimates, there is the potential for a negative estimate,
particularly in small samples or when the candidate samplers are more precise than the reference
samplers.

The error variance of the candidate samplers is then estimated as the mean of the variance
estimates for individual candidate samplers

This estimate is unbiased, although not independent of the variance estimate for the reference
samplers.

Using the above variance estimates, weighted least squares can be performed with weights
taken as the reciprocals of the estimated variances. An example using simulated data is provided in
the next section.

For final estimates , , , a back transformation to the original parameter space is2
*Nσ 2

Nσ ˆijγ
accomplished as follows:

2 2
* *ˆ ˆ*ˆ ( 1)N Ne eσ στ = −

2 2ˆ ˆˆ ( 1)N Ne eσ στ = −

ˆˆ 1ij
ijb eγ= −

Note that if as expected  and  then , and , and the above* 0.1τ ≤ 0.1τ ≤ *
*Nτ σ≈ Nτ σ≈

might be written with a single variance parameterization. 
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5.3 Evaluating Equivalency

Having a common measurement error model for DQO and equivalency testing greatly
simplifies the equivalency testing, since the desired performance levels for candidate samplers (see
Table 2) can now be estimated directly after completion of the test. 

Because of the simplifying model assumption that sampler-specific precisions are equal for
all candidate samplers, a common candidate sampler relative precision parameter is estimated from
the model. The estimated candidate relative precision can then be compared directly to the value
required by the DQO gray zone.

For relative bias, however, each candidate sampler has its own sampler-specific relative bias
estimated, and so there is the question of how to decide whether the candidate samplers as a whole
are satisfying the DQO requirements. One approach would be to consider the candidate samplers
equivalent if all estimated biases satisfied the DQO requirement. Another approach would be to
assume a normal distribution for the bias parameters and consider the candidate samplers equivalent
if the estimated probability of a randomly selected candidate sampler with a relative bias outside the
requirements is less than a given amount.

To assume that the relative bias parameters have a normal distribution would be to treat their
estimates as random effects. Ideally, the model would explicitly do that (currently they are treated
as fixed effects), although deciding if the normal assumption is reasonable would require more
candidate samplers in the tests. The model might be made a random-effects model from the start,
although to do so would require time to develop such an approach. 

Ideally all estimates should be evaluated with an associated level of uncertainty, either using
confidence intervals or hypothesis tests. This is a limitation of the current approach, although it
might be addressed with additional work on the modeling.
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6. A Simulation Example

A simulation using the current 1 in 6 equivalency tests—1 site, 3 samplers per type, 10 daily
measurements—is now provided to illustrate the performance of the model. 

The underlying population data for the simulation was obtained using the DQO sinusoidal
model. Ten days were randomly selected from the year, and the true PM2.5 means for those days
were multiplied by lognormal variables of mean 1 and standard deviation 0.8 to adjust for population
variability. These population values were accepted as is, without further screening. For the three
candidate samplers, relative bias parameters were drawn from an assumed N(.05,.032) distribution.
The mean and variance of this distribution lead to candidate samplers with a tendency to bias
readings upwards. The population and relative bias values were then retained for 1000 simulations
of measurement error.

Table 3 illustrates the unbiasedness of the simulation estimates for the log-transformed
model and provides some insight on the precision of the estimates. Notably, there were at times
negative variance estimates for the candidate sampler precision, due in part to the sample size, and
also to the candidate sampler having been specified as more precise than the reference sampler for
this simulation.

Table 3. Results from 1000 Simulations of Measurement Error in Current 1 in 6 Sampling Design

Original Data Log-Transformed Data

Parameter
True

Value 
Simulation

Mean Parameter
True
Value

Simulation
Mean

Simulation
Standard

Error

Simulation
Standard
Deviation

J* .05 .049 FN* .05 .050 2.5 x 10-4 .008
J .025 .025 FN .025 .0251 NA NA

b11 .075 .076 (11 .073 .073 3.8 x 10-4 .012
b12 .038 .039 (12 .038 .038 3.8 x 10-4 .012
b13 .097 .098 (13 .093 .093 3.8 x 10-4 .012

aObtained as the root of the average variance, as opposed to the average of the root of simulation variances, due to the
occasional negative variance estimate. Standard errors and deviations are not provided for this reason. When a negative
variance estimate was encountered, the candidate precision was set equal to one-half of the estimated reference precision
for purposes of obtaining weights. Doing so might increase standard deviations of the estimated relative biases, although
the estimates themselves are still unbiased.

If we assume that the bias parameters are normally distributed, then we might ask what the
probability would be of a candidate sampler having relative bias outside of the DQO required
bounds using the estimated biases to estimate the parameters of the normal distribution. With only
three estimates of relative bias, this provides an admittedly rough approach. To illustrate, according
to the true normal distribution for the relative bias parameters, this probability would be 0.048. If
the relative biases of the three candidate samplers of the simulation example were known with
certainty, then the mean of the normal distribution would be estimated as 0.070 and its standard
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deviation as 0.030. The probability of observing a relative bias outside of the acceptable range is
then 0.16. If the simulation estimate relative biases were used to estimate this probability, then the
average estimate of the probability would be 0.15 with a standard deviation of 0.09.

Code in the R language is provided in Appendix A both for simulating data under the
measurement error model and for fitting the model reading data from a file.
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X Z W= + +α βμ ,

7. Discussion

In this report, a comparison of the current 1 in 6 equivalency and DQO requirements has
been provided, as well as a methodology to conduct the equivalency tests using the same
measurement error model as that used in the DQO modeling. We now discuss general aspects of
equivalency testing.

Although it is not the focus of this report to redesign the equivalency tests, many additional
questions might be asked. Should range requirements be used? If so, what should they be? How
many candidate or reference samplers should be used? How many sites should be used? How many
days should be used? These questions might, in part, be addressed by simulation using the given
model. 

The method provided in this report estimates precision parameters for both candidate and
equivalency samplers. With enough observations, the precision of reference samplers may be known
well enough to use a constant value. Doing so might improve the precision estimates for the
candidate samplers. However, estimating it separately does provide a check of sorts on the results.

Other checks on the model assumptions might be accomplished through comparison of the $SNij
2

 or the . Graphical visualization of the model fit might be done by plotting the site means of2
*,ˆ N ijσ

candidate versus reference samplers, or by using the estimated daily means (the ) to create plotsˆ ikμ
of the individual observations.

Various scenarios might be investigated using these approaches. For example, there may be
a temperature effect on sampler bias where readings in one time period might be biased in an
opposite direction to those in another. Such a situation would not affect the estimates of relative
precision, but would lead to relative bias estimates lying between the two extremes. If effects such
as these are thought to exist, then the model might be extended to accommodate them, perhaps by
adding separate seasonal bias parameters, or by allowing the bias to depend on temperature in the
model. 

If checks suggest a problem with the model, then it should be noted that the adopted model
is essentially the DQO model (with the exception of assumptions of section 5.1), and so failure of
the model might then suggest modification of both the equivalency and DQO measurement error
models. If needed, the model should allow extension to models with predictors such as temperature
and humidity.

If the model does require extension, one potential direction is suggested in the paper by
Rocke and Lorenzato (1995). In their paper they considered models of the form

where the  gives the current multiplicative model, with  now allowing for contaminationZβμ α
and  being an additive error allowing for error at low measured particulate matter concentrations.W
Their model would need modification to allow for separate error distributions of candidate and
reference samplers and for sample-specific $’s, and consequences for model fitting might either be
an increase in the dimension of integration (if random effects) or an increase in the dimension of the
space being optimized over (if fixed effects).
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An alternative approach to extending the model would be to place it within a Bayesian
framework. Doing so would lead to the ability to fit the model in a single step (as opposed to first
estimating variances to obtain weights) and would provide probability statements about parameters
of interest that would account for both statistical and practical significance. As with all Bayesian
analyses, prior distributions would be required for the model parameters; however, given vague
priors and sufficient data, their effect on the final inference would be negligible.
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Appendix A

R Code for Data Simulation and Model Fitting

This appendix provides the software code to simulate observations under the population and
measurement error model and also to load observed (or simulated) values from a file to fit the
weighted least-squares model.

Simulations and model fitting for this WA were conducted in the R language, a high-quality,
freely available data analysis package based on the S language. The software can be found at
www.r-project.org for most major operating systems. The commercially available S-Plus language
is also based on S, and the code given here should run in S-plus with minor modification. The code
can be run either by cut and pasting into the R command prompt window or through use of the
source command to load directly from a file.

Three sections of code are provided. The first section gives generic functions that should be
loaded into R prior to using either of the other two sections. The second section provides code to
simulate observations and save to a file. The third section provides code to read observations from
a file and fit the model. 

An example of the input file format is given in Figure A-1. The file is tab-delimited, with the
first column giving the site and the second the sampler at that site. Remaining columns are
measurements from time 1 through time K. A header row must provide variable names, although
these are not used in the code. The candidate and reference sampler data should be stored in separate
files with this format.

Site Sampler t1 t2 t3 t4

1 1 4.316 21.775 49.893 6.967

1 2 4.498 21.072 47.852 6.014

1 3 4.251 19.682 49.464 6.901

2 1 0.973 6.569 7.2 20.666

2 2 0.869 6.338 7.016 19.099

2 3 0.88 5.812 6.62 19.367

Figure A-1. Example of file format for candidate or reference sampler data.
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Generic R Functions
# Function to add measurement error to daily means

add.merr <- function(muik,sdev,rb){ 

  zijk <- rnorm(I*J*K,mean=1,sd=sdev)

  zijk <- array(zijk,dim=c(I,J,K))

  xijk <- array(0,dim=c(I,J,K))

  for(i in 1:I){

    for(j in 1:J){

      for(k in 1:K){

        xijk[i,j,k] <- muik[i,k]*(1+rbcij[i,j])*zijk[i,j,k]

      }

    }

  }

  return(xijk)

}

# get reference variance, log transformed data

get.varlogr <- function(yijk){

  s2ik <- array(0,dim=c(I,K)) # Estimate reference variance

  for(i in 1:I){

    for(k in 1:K){

      s2ik[i,k] <- var(yijk[i,,k])

    }

  }

  return(mean(s2ik))

}

# get candidate variance, log transformed data

get.varlogc <- function(yijk,xijk,var1){

  sigma2ij <- array(0,dim=c(I,J)) # Estimate candidate variance

  est.daymean <- rep(0,K)

  for(i in 1:I){

    for(k in 1:K){

      est.daymean[k] <- log(mean(xijk[i,,k]))

    }

    for(j in 1 :J){

      sigma2ij[i,j] <- var(yijk[i,j,]-est.daymean)-var1/J

    }

  }

  return(mean(sigma2ij))

}

# Function to write PM25 readings to tab-delimited file.  

write.pm25 <- function(filepath,filename,xijk){

  header <- c("site","sampler", paste("t",1:K,sep=""))

  write.table(cbind(rep(1,J),1:J,round(xijk[1,,],3)),

              paste(filepath,filename,sep=""),sep="\t",quote=F,

              row.names=F,col.names=header)

  if(I>1){
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    for(i in 2:I){

      write.table(cbind(rep(i,J),1:J,round(xijk[i,,],3)),

                  paste(filepath,filename,sep=""),sep="\t",append=T,quote=F,

                  row.names=F)

    }

  }

}

# Function to read PM25 readings to tab-delimited file.  

read.pm25 <- function(filepath,filename){

  x <- read.table(paste(filepath,filename,sep=""),sep="\t",header=T)

  xijk <- array(0,dim=c(I,J,K))

  for(i in 1:I){

    for(j in 1:J){

      for(k in 1:K){

        xijk[i,j,k] <- x[I*(i-1)+j,k+2]

      }

    }

  }

  return(xijk)

}

R Code to Simulate Data
# Define constants

I <- 1          #  Number of sites

J <- 3          #  Samplers per site

K <- 10         #  Readings per sampler per site

sdr <- .05      #  Reference precision 

sdc <- .025     #  Candidate precision

rbc.mean <-.03  #  Candidate relative bias random effects mean

rbc.sd <- .05   #  Candidate relative bias random effects standard deviation

FILEOUT <- T    #  Write data to file?

FILEPATH <- "C:\\temp\\" # File Path.  Double backslash Windows, Single backslash UNIX.

FILENAMER <- "PM25R.dat" # Reference sampler data file 

FILENAMEC <- "PM25C.dat" # Candidate sampler data file

rbcij <- array(0,dim=c(I,J))            # Generate true sampler relative biases

rbcij[1,] <- rnorm(J,mean=rbc.mean,sd=rbc.sd)   # Assume normal distribution

muik <- array(0,dim=c(I,K))

days <-sample(1:365,K)

muik[1,] <- 16.3+11.125*sin((2*pi*days)/365+1.9) # Population model mean daily

x <- rnorm(K,mean=-.25,sd=.8)

muik[1,] <- muik[1,]*exp(x)  # Adjust for daily variation with lognormal(1,.8^2)

xrijk <-add.merr(muik,sdr,array(0,dim=c(I,J))) 

xcijk <-add.merr(muik,sdc,rbcij)

if(FILEOUT==T){ #Write to file
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  write.pm25(FILEPATH,FILENAMER,xrijk)

  write.pm25(FILEPATH,FILENAMEC,xcijk)

}

R Code to Fit Model
# Define constants

I <- 1          #  Number of sites

J <- 3          #  Samplers per site

K <- 10         #  Readings per sampler per site

rblb <- -.1     #  DQO relative bias lower bound

rbub <- .1      #  DQO relative bias upper bound

FILEPATH <- "C:\\temp\\" # File Path.  Double backslash Windows, Single backslash UNIX.

FILENAMER <- "PM25R.dat" # Reference sampler data file 

FILENAMEC <- "PM25C.dat" # Candidate sampler data filel 

xrijk <- read.pm25(FILEPATH,FILENAMER) # Read from file

xcijk <- read.pm25(FILEPATH,FILENAMEC)

yrijk <- log(xrijk)     # log-transform

ycijk <- log(xcijk)

y <- rep(0,I*J*K*2)  # Arrange regression response vector

for(i in 1:I){

  for(j in 1:J){

    for(k in 1:K){

      y[(i-1)*J*K+(j-1)*K+k] <- yrijk[i,j,k]

      y[I*J*K+(i-1)*J*K+(j-1)*K+k] <- ycijk[i,j,k]

    }

  }

}

site <- rep(rep(1:I,rep(J*K,I)),2) # Find regression predictor vectors 

sampler.cand <- matrix(0,nrow=I*J*K,ncol=I*J)

for(i in 1:(I*J)){

  sampler.cand[((i-1)*K+1):(i*K),i] <-rep(1,K)

}

sampler <- rbind( matrix(0,nrow=I*J*K,ncol=I*J),sampler.cand)

time <-rep(rep(rep(1:K,J),I),2)

site <- as.factor(site)

time <- as.factor(time)

varlogr <- get.varlogr(yrijk)

varlogc <- get.varlogc(ycijk,xrijk,varlogr)

varlogc2 <- varlogc

if(varlogc<=0) varlogc2 <- varlogr/2 # If negative variance estimate

                                    # then set to one half reference variance

w <- c(rep(1/varlogr,I*J*K),rep(1/varlogc2,I*J*K)) # Weight vector

m <- lm(y~-1+sampler+site*time-time-site,weights=w) # The regression

# Standard deviations and relative biases for log transformed data
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sdevlogr <- sqrt(varlogr)

if(varlogc>0) sdevlogc <- sqrt(varlogc)

rblogc <- m$coefficients[1:J]

# Standard deviations and relative biases for raw data

sdevr <- sqrt(exp(varlogr)*(exp(varlogr)-1))

if(varlogc>0) sdevc <- sqrt(exp(varlogc)*(exp(varlogc)-1))

rbc <- exp(rblogc)-1

# probability candidate outside bounds

reffects.mean <- mean(rbc) 

reffects.sdev <- sqrt(var(rbc))

prob.rb <- pnorm(rblb,mean=reffects.mean,sd=reffects.sdev) +

  1-pnorm(rbub,mean=reffects.mean,sd=reffects.sdev)

# output to screen, if needed

print(paste("Estimated reference sampler precision:",round(sdevr,3)))

if(varlogc<0){

  print("Estimated candidate sampler precision: Negative variance")

  } else {

    print(paste("Estimated candidate sampler precision:",round(sdevc,3)))

  }

print("Relative bias estimates:")

print(rbc)

print(paste("Mean of relative biases:",round(reffects.mean,3)))

print(paste("Standard deviation of relative biases:",round(reffects.sdev,3)))

print(paste("Estimated probability relative bias exceeds DQO limits (Normal
assumption):",round(prob.rb,3)))


