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1.0 INTRODUCTION

The need for spatial interpolation models in the regulatory environment has grown in the
past few years. The EPA is using these models to review decisions on monitoring network
design and to predict the efficacy of emission control programs. Due to the limited number of
monitoring sites across the country for ambient concentrations of ozone and fine particles, there
is a need to use spatial interpolation to predict ambient concentrations in unmonitored locations.
Support for these methods has emerged from scientists and state/local/EPA agencies in recent
workshops®. The general consensus is that it is now possible to model the spatial dependence of
air pollution data to reliably predict concentrations in unmonitored locations along with
associated uncertainties for use in developing regulatory policy’. EPA recognizes the merits of
these methods, more specifically kriging, for use in the modeled attainment tests for the 8-hour
ozone and PM 2.5 National Ambient Air Quality Standards attainment demonstrations. These
methods provide environmental decision makers the opportunity to show important gradients of
air pollution, review the location of monitoring networks and refine the definition of
nonattainment boundaries.

The purpose of this document is to provide an overview and better understanding of
spatial interpolation methods. Key to selecting an interpolation method and understanding the
results is understanding the data. Characteristics of the data that are important to consider are
spatial representativeness, temporal sampling frequency, measurement accuracy, and existence of
spatial relationships or behaviors at varying scales. This document discusses whether there is a
need to force the interpolated surface to pass through the measured values, whether the data
contain a global trend across the entire area of interest, or whether short-range variation is
significant. These are important features to consider when interpolating spatial data. General
interpolation methods and data considerations are discussed in Section 2. Ordinary kriging, a
geostatistical spatial interpolation method, is discussed in Section 3, along with an example of
developing an interpolated surface of PM2.5 concentrations in the eastern U.S. This section also
briefly touches on limitations of this approach and methods for evaluating model performance
through diagnostics. Common extensions to ordinary kriging such as including spatial trends,
temporal dynamics, non-stationary covariance structures, use of covariates and multivariate
modeling are presented in Section 4. Section 5 contains more details on model evaluation.
Section 6 discusses software for performing spatial interpolation analysis. Section 7 provides an
example use of S-Plus to identify an optimal kriging estimate for annual average PM2.5

““Spatial Data Analysis Technical Exchange Workshop™, Research Triangle Park, NC,
December 2001; http://www.epa.gov/ttn/amtic/spatwrks.html and “2™ Particulate
Matter/Regional Haze/Ozone Modeling Workshop™, Santa Fe, NM, June 2003;
http://www.epa.gov/scram001/pmwork.htm .

’Holland, D.M., W.M. Cox, R. Scheffe, A.J. Cimorelli, D. Nychka, and P.K. Hopke, (2003),
“Spatial Prediction of Air Quality Data”, EM, August 2003, p. 31-35.
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concentrations and an example use of SAS to krig 8-hour ozone concentrations. Section 8
discusses limitations to spatial interpolation. Section 9 discusses alternative methods that may be
applied when certain limitations to kriging are relevant. Section 10 provides a summary of
references on various aspects of spatial interpolation. This document should be a helpful
reference and synopsis of methods and issues to be addressed when interpolating ambient air
quality concentrations. For more details, a list of references has been provided within each
section. Finally, this document is not intended to be static. As new information becomes
available, EPA will update the document to reflect significant advances in spatial interpolation
technology.



20 OVERVIEW OF SPATIAL INTERPOLATION MODELS

Spatial interpolation as applied to air pollution data is loosely defined as the procedure for
estimating ambient air concentrations at unmonitored locations throughout an area based on
available observations within some proximity of the area. The justification underlying spatial
interpolation is the assumption that points closer together in space are more likely to have similar
values than points more distant. This observation is known as Tobler’s First Law of Geography
[1]. Spatial interpolation is a very important component of many geographical information
systems (GIS), frequently used as a tool to aid spatial decision making both in (1) physical and
human geography and (2) related disciplines, such as air quality research and mineral
prospecting. Many of the techniques of spatial interpolation are two-dimensional developments
of the one-dimensional methods originally developed for time series analysis [2].

Figures 2.1.a and 2.1.b provide an example of the type of information that can be
provided by a spatial interpolation modeling exercise. Figure 2.1.a displays a contour map of
spatially-interpolated (statistically modeled) annual average PM, . concentrations over much of
the eastern United States. The contours indicate the spatial gradients of the annual PM, . process
across the domain, where state boundaries have been overlaid for perspective. Figure 2.1.b
displays a similar map of the spatial prediction errors (uncertainty) associated with the
interpolation.® Uncertainty estimation can be a critical component of spatial interpolation
because the outputs from such an exercise are model estimates, not true values. These results are
based on a universal kriging model applied to annual average PM, . ambient air monitoring data
generated by EPA’s Federal Reference Method (FRM) network during calendar year 2000.
These data will be used for a running case study example presented for illustration purposes
throughout this and other sections of the document.

The contours of Figure 2.1.a provide a general indication of spatial PM, ; air quality at the
annual scale. A spatial interpolation exercise can also be used to answer more specific questions.
For example, which areas of the depicted region exceed an annual arithmetic mean PM, ; level of
16 -g/m*? Figure 2.2 provides an answer to that question, along with an indication of
uncertainty. Based on the spatial interpolation model’s results (same results as those used to
generate Figures 2.1.a and 2.1.b), Figure 2.2 identifies those geographic areas that are estimated
to exceed 16 - g/m? for an annual PM, . level (dark gray) by at least one standard deviation, those
areas estimated to fall below 16 - g/m? (white) by one standard deviation, and those areas within
+/- one standard deviation of 16 - g/m?® for which the conclusion is less certain (light gray).

®  Note in Figure 2.1.b that some contiguous contour lines display the same standard error value (e.g., a

1.5 contour line next to a 1.5 line). Such results are caused by rounding, as the default setting in
S-Plus for displaying values of the contour lines is one decimal place. Some manipulation of the
S code running the default program would be required to expand the number of decimal places
displayed.



The remainder of this section provides a more detailed overview of spatial interpolation
and various approaches. However, the primary focus of this document is the spatial interpolation
method known as kriging, in particular, ordinary kriging. Section 3 discusses ordinary kriging in
detail and Section 4 provides some kriging-based and other extensions to the ordinary kriging
approach. One of the main reasons for focusing on kriging in this document is that it is a member
of the stochastic class of spatial interpolation schemes (discussed in Section 2.1). In particular,
kriging is a statistical model that produces both a spatial surface of predictions for the process of
interest as well as the uncertainty associated with those estimates. It is an advantage of stochastic
methods that they can provide measures of uncertainty in the spatial interpolation model’s output,
which serves to guide spatial decision making.

latitude

longitude

Figure 2.1.a Spatial interpolation of annual average PM, . concentrations for
2000.
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Figure 2.1.b Standard errors of estimated annual average PM, ¢
concentrations for 2000.

longitude

longitude

Figure 2.2  Geographic areas estimated to exceed (dark
gray) or not exceed (white) an annual average
PM, . level of 16 Zg/m?in 2000. The
conclusion is less certain for those areas

shaded light gray.



2.1 General Characteristics of the Data

Knowledge about the data that are to be interpolated is critical to selecting an appropriate
interpolation method and to understanding the results produced by the interpolation.
Characteristics of the data that are important to consider include spatial representativeness,
temporal sampling frequency, measurement accuracy, and existence of spatial relationships or
behaviors at varying scales. If data are gathered for a specific purpose, such as measuring broad
pollutant levels in densely populated areas, an interpolation based on those data may not perform
well at predicting pollutant levels in rural areas. If data are not gathered for purposes of
measuring pollutants issued from point sources, an interpolation may not perform well at
predicting peaks in the surface caused by point sources. Also, there may not be a need to force
the interpolated surface to pass through the measured values if there is a high degree of
imprecision in those measurements. Another trait to consider is the true nature of the spatial
process being measured; for example, whether the data are expected to contain a global trend
across the entire area of interest or whether short-range variation is significant. Such conditions
might affect decisions regarding the use of global or local interpolators.

2.2  General Characteristics of Spatial Interpolation Methods

There are several characteristics of spatial interpolation methods that are useful to review
prior to discussing specific methods. These characteristics include point-based versus
areal-based, global versus local, exact versus approximate, stochastic versus deterministic,
gradual versus abrupt, and the ability to consider covariates [3]. Each of these classifications is
described below.

Point-based versus Areal-based: Point-based interpolation methods predict values at
specific points in space based on the values and locations of other individual points in space.
Predicting an ozone concentration at a specific latitude and longitude based on the measurements
from a monitoring network is an example of this. On the other hand, areal interpolation methods
estimate values for entire zones or areas based on data available for a different set of zones or
areas. For example, given the population in surrounding Counties A, B, C, and D, estimate the
population in County E. As another example, many commonly-used atmospheric dispersion
models predict areal averages (i.e., average pollution levels over grid cells).

Global versus Local: Whether an interpolation method utilizes a single function that is
mapped across the entire area of concern or breaks up the area into smaller blocks that are
evaluated individually is another important characteristic. Global interpolators develop and
utilize a single function that estimates values for the entire sample area. Thus, changing one
input data point affects the predictions for the entire area. Local interpolators break the full
sample area into smaller pieces that are each evaluated individually by a particular function.
With a local interpolator, a change in a single data point affects only those areas that consider
that point in the prediction algorithm. Local interpolation methods that consider a large
percentage of the measured data points in each localized calculation become similar to global



methods. One example of a global interpolator is global polynomial interpolation, a method that
fits a smooth surface based on a single mathematical function over the measured points. This
type of interpolation may be useful for interpolating surfaces with gradual variation over the area
of interest.

Exact versus Approximate: Interpolation methods vary based on whether the predicted
surface must include the exact values of the measured data points or not. Exact interpolators do
match the measured values on which the interpolation is based. Thus, the predicted surface must
pass through each measured data point. Approximate interpolators utilize the measured values in
calculating the predicted surface, but the surface is not restricted to passing through the measured
values at those locations. This feature of approximate interpolators may make them more
attractive for some users as they can produce a surface that avoids sharp peaks and troughs in the
estimated surface.

Approximate interpolators may be more appropriate when there is uncertainty about the
accuracy of the measured values (i.e., measurement error). On the other hand, if a user has
confidence in the values of the measured data points, an exact interpolator may be preferred. For
example, if an analyst is interpolating rainfall based on exact measurements obtained from
weather stations with perfect accuracy, the analyst may feel comfortable using an exact
interpolator that reflects those measurements. Keep in mind, however, that the choice of an
interpolation method is driven by a user’s needs and even with precise, accurate data a user may
prefer to not restrict the predicted surface to reproducing the measured values exactly. It is
possible that by allowing the predicted surface to deviate from the measured values, the
predictions for non-sampled locations may be more accurate [2].

Stochastic versus Deterministic: Whether methods utilize the concept of randomness is
another important characteristic to consider. Stochastic methods incorporate the idea of
randomness into the interpolation process. These methods, which include kriging, allow the
uncertainty of the predicted values to be calculated. Deterministic methods do not incorporate
statistical probability theory into development of the predictions. Instead, these methods use
mathematical formulas or other relationships to interpolate values. An example of a
deterministic method would be one that derives a predicted value by a simple averaging of
nearby measured points. Inverse Distance Weighted (IDW) is a deterministic method that uses a
weighted average of nearby points with distance being the only factor influencing calculation of
the weight. The advantage of stochastic methods is the ability to provide estimates of uncertainty
for the spatial interpolation model’s output. Kriging is a stochastic method because it assigns
weights based not only on the distance between surrounding points but also on the spatial
autocorrelation among the measured points, which is determined by modeling the variability
between points as a function of separation distance.

Gradual versus Abrupt: Another distinguishing characteristic of spatial interpolators is
the smoothness of the predicted surface that is produced. A gradual interpolator produces a
surface with gradual, relatively smooth, changes. An abrupt interpolator produces a
discontinuous surface with sharp changes. Figure 2.3 is an illustration of the difference between



a gradual and abrupt interpolator. The proximal “nearest-neighbor” method, which sets unknown
points equal to the nearest measured point, is an example of an abrupt interpolator (see

Section 2.2). Note also that local interpolators can produce discontinuous surfaces with abrupt
changes.

Figure 2.3 lllustration of Gradual vs. Abrupt
Interpolator.

Inclusion of Covariates: A final characteristic is the ability of an interpolator to include
additional variables other than distance between points in the interpolation process. There are
cases where inclusion of other variables in the spatial interpolation model can lead to a better
predicted surface because the additional information helps identify highs and lows associated
with the spatial process that otherwise would be missed. Another potential benefit is the ability
to reduce the uncertainty of the interpolation model’s output if, in fact, the covariates explain
some of the spatial variability in the process of interest. Geographic variables of use in
explaining spatial variation might include elevation, topography, and land use. When modeling
air pollution, other covariates that might improve predictions include other pollutants (that are
correlated with the pollutant of interest), meteorology, or emissions information. For example, if
0zone concentrations are correlated with temperature, adding temperature to an ozone spatial
interpolation model should improve the accuracy of the predictions.



2.3  Specific Methods of Spatial Interpolation

There are various methods available to perform spatial interpolation — some more
scientific than others. The general theory behind spatial interpolation is the previously-
mentioned Tobler’s First Law of Geography — the closer together two points are in space the
more likely those points are to be similar. Techniques range from a “nearest-neighbor” approach
that involves identifying the closest measured point to an unmeasured point and assigning the
value of the measured point to the unmeasured point, to an IDW approach that involves
estimating values by averaging nearby data points with closer points receiving more weight, to a
statistical or geostatistical approach such as kriging that involves producing prediction surfaces
and accuracy measures for those predictions by evaluating the autocorrelation of measured
points. The different methods offer various combinations of the characteristics listed in the
previous section and should be applied as appropriate dependent upon the data, the purpose of the
analysis, and the planned use of the predicted surface. Since the primary focus of this document
is on kriging, this section provides a review of several primary types of interpolation methods
followed by a more detailed overview of kriging and some examples of kriging applications. All
of the methods discussed are point-based as opposed to areal.

2.3.1 Interpolation Methods Other Than Kriging

Although, as stated above, kriging is the primary focus of this document, it is useful to be
aware of some of the other common point-based spatial interpolation methods that have been
developed. The following provides an overview and references for further exploration.

Polygonal (Nearest Neighbor): Polygonal or proximal techniques are deterministic
methods that utilize no information about the system being analyzed other than the measured data
points. They are relatively simple to implement in that all points in an area are set equal to one
value, whether it be the value of the nearest measured point, an average of the cell and its
surrounding points, or the mode of the cell and its surrounding cells. Thus, polygonal
interpolators are local in that predictions are based on values from a subset of the area of interest.
When using the value of the nearest point or the mode, all predicted values are equal to a
measured value. Thus, based on the technique used to assign values to cells, polygonal methods
can be either exact or approximate. The interpolated values generated by these methods will also
be restricted to the range of the measured values, i.e., the maximum predicted value will not
exceed the maximum measured value and vice versa.

These methods are more formally called by a few names including Thiessen Polygons,
Voronoi diagrams or maps, and Delauney triangulation. The output of these methods is a set of
contiguous polygons whose values change abruptly at the boundaries between them, which
defines these methods as abrupt interpolators as opposed to gradual. For a two-dimensional
spatial situation, the polygons are drawn by connecting neighboring points with a line and
intersecting that line with a perpendicular line. If the sampled data points are in a rectangular
grid, then the resulting polygons will be of equal size and regularly spaced. If the measured data
points are irregularly spaced, then the resulting predictive surface will be an irregular lattice of



polygons. This type of method may be appropriate for interpolating data that are more discrete
than continuous in nature. Figure 2.4 presents different views of spatial surfaces predicted by a
polygonal method.

EE B (Observations Interpolation | =

Figure 2.4  Examples of polygonal interpolations in one spatial dimension (left) and two
spatial dimensions (right).

Inverse Distance Weighted (IDW): Another set of deterministic interpolation methods
are based on mathematical formulas. Estimates are based on averages of the measured values at
n known points. IDW is an example of a gradual, exact, mathematical interpolator in which
points closer to the measured data points receive more weight in the averaging formula. The
formula can be adjusted to change the relative importance of the nearest points as opposed to
those that are further away, i.e., the power. Specifying a higher power places more weight on the
nearer points while a lower power increases the influence of points that are further away. Using
a lower power will result in a smoother interpolated surface being generated. Other variables
within the IDW formula that can be altered include the number of measured points that can be
considered in the averaging, the zone of influence or search area within which measured data
points will be considered, and the direction from which measured points are selected. IDW is a
local interpolator except in the case where the zone of influence for all parts of the area of
interest includes all measured points.

There are a few areas of concern with the IDW and other non-statistical averaging
methods. First, the range of the interpolated values is constrained by the range of the measured
values, i.e., no interpolated values will fall outside the observed data range. This means that high
or low points of the area under consideration will be missed if they are not sampled. Also,
because of the nature of the averaging formula, areas outside of the sampled area will flatten to
the mean value.
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EPA’s AIRNow program uses IDW techniques to produce real-time ozone maps and air
quality forecasts. The surfaces are generated using a power of 2 in the denominator of the
weighting variable, i.e., 1/r%, with r representing distance from a measured point. For additional
information about the IDW method and application of the method to air monitoring data, see
references [4,5]. The first paper, [4], compares interpolations of PM,, concentrations using four
different weighting schemes — 1/r, 1/r%, 1/r*, and 1/r. As the exponent in the denominator
increases, increasing weight is placed on measured values closest to the point being estimated.

Splines: “Spline” interpolation is another type of deterministic interpolation method.
Splines are part of a family of exact interpolation models called radial basis functions (RBF).
RBF methods include thin-plate spline, regularized and tension spline, and inverse multiquadratic
spline. RBF methods seek to minimize the overall curvature of the estimated surface while
passing through the measured data points. A mathematical function is utilized that produces a
surface with continuous elevation and slope and minimum curvature; thus, these are gradual
interpolators. This method performs best when the surface is relatively smooth and a large
number of measured data points are available. RBFs will not perform as well when there are
large changes in the surface within short distances. RBF interpolation methods are local in that a
subset of measured values can be used to generate each prediction, with the actual search area
being flexible. Allowing more measured values in the calculation will result in a smoother
predicted surface.

Unlike IDW methods, the values predicted by RBFs are not constrained to the range of
measured values, i.e., predicted values can be above the maximum or below the minimum
measured value. For additional details on spline interpolation and a specific application of the
Thin Plate Spline method, see reference [6].

Spline Interpolation Polynomial Interpolation

Figure 25  Comparison of Spline and Polynomial Interpolation Methods.

Polynomial Interpolation: Polynomial interpolation is an approximate, deterministic
interpolation method that fits a mathematical function to the measured points. Options range
from a first-order polynomial (linear) to a second-order polynomial (quadratic) to higher-order
polynomials. The predictive surface is typically generated by using a least-squares regression fit
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that minimizes squared differences between the surface and measured points. Because it is an
approximate interpolator, the surface is not constrained to going through the measured points as
with RBF interpolation (see Figure 2.5). In addition, because the method generates the best fit
(least squares criterion) between the measured points, it is unlikely that the fitted line will run
outside the minimum or maximum measured value, except once it goes beyond the measured area
(i.e., extrapolation).

There are two types of polynomial interpolation — global and local. Global polynomial
interpolation fits a polynomial model to the entire surface based on all measured points. Local
polynomial interpolation fits multiple polynomials using subsets of the measured points. Global
polynomial interpolation is more appropriate for a surface that varies slowly over the area of
interest, while local polynomial interpolation captures more of the short-range variation in
addition to the long-range trend. Global polynomial interpolation accounts for bends in the
data — one bend with quadratic, two bends with cubic, and so forth. Surfaces that do not display
a series of bends, however, such as one that increases, flattens out, and increases again, can be
better represented using local polynomial interpolation. Both the global and local methods
produce a gradual predicted surface.

2.3.2 Kriging

Geostatistical interpolation methods are stochastic methods, with kriging being the most
well-known representative of this category. Kriging methods are gradual, local, and may or may
not be exact (perfectly reproduce the measured data). Also, they are not by definition set to
constrain the predicted values to the range of the measured values. Similar to the IDW method,
kriging calculates weights for measured points in deriving predicted values for unmeasured
locations. With kriging, however, those weights are based not only on distance between points,
but also the variation between measured points as a function of distance. The kriging process is
composed of two parts — analysis of this spatial variation and calculation of predicted values.

Spatial variation is analyzed using variograms, which plot the variance of paired sample
measurements as a function of distance between samples. An appropriate parametric model is
then typically fitted to the empirical variogram and utilized to calculate distance weights for
interpolation. Kriging selects weights so that the estimates are unbiased and the estimation
variance is minimized. This process is similar to regression analysis in that a continuous curve is
being fitted to the data points in the variogram. ldentifying the best model may involve running
and evaluating a large number of models, a process made simpler by the geostatistical software
packages or features discussed later in this document.

After a suitable variogram model has been selected, kriging creates a continuous surface
for the entire study area using weights calculated based on the variogram model and the values
and location of the measured points. The analyst has the ability to adjust the distance or number
of measured points that are considered in making predictions for each point. A fixed search
radius method will consider all measured points within a specified distance of each point being
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predicted, while a variable search radius method will utilize a specified number of measured
points within varying distances for each prediction.

Because kriging employs a statistical model, there are certain assumptions that must be
met. First, it is assumed that the spatial variation is homogenous across the study area and
depends only on the distance between measured sites. There are different kriging methods and
each has other assumptions that must be met. Simple kriging assumes that there is a known
constant mean, that there is no underlying trend, and that all variation is statistical. Ordinary
kriging is similar except it assumes that there is an unknown constant mean that must be
estimated based on the data. Universal kriging differs from the other two methods in that it
assumes that there is a trend in the surface that partly explains the data’s variations. This should
only be utilized when it is known that there is a trend in the data.

A major benefit of the various forms of kriging (and other stochastic interpolation
schemes) is that estimates of the model’s prediction uncertainty can be calculated, considered in
the analysis, and plotted along with the predicted surface. Such uncertainty information is an
important tool in the spatial decision making process.

This section has provided a brief introduction to kriging interpolation. Section 3 of this
document presents the details of the ordinary kriging process. Section 4 will review other types
of kriging, including universal kriging, kriging with external drift, and co-kriging, in discussing
extensions to the ordinary kriging model.

2.3.3 Kriging Applications

The purpose of this section of the document is to demonstrate that the spatial interpolation
technique of kriging (in its various forms) is a well-established tool for spatial data analysis and
decision making. For many years kriging has been used in various applications, including many
in the air quality area and, more generally, in other environmental applications as well.

In a paper published in 1998, James Mulholland and other researchers from the Georgia
Institute of Technology and Emory University utilized a universal kriging approach to interpolate
ozone levels in the Atlanta region for purposes of investigating the relationship between ozone
concentrations and increases in pediatric asthma rates [7]. They used a linear drift function to
represent the trend in their data. Kriging has also been utilized to assist in the design of pollution
monitoring networks. A 1991 paper by two Johns Hopkins University researchers highlighted
the use of kriging to assist in optimizing the location of air pollutant (in this case, sulfur dioxide,
nitrogen oxides, particulate matter, and unsaturated hydrocarbons) monitoring stations for a
network in Tarragona, Spain [8]. Similarly, a study by Holland, et al., published in 1998 utilized
kriging and other methods to evaluate the CASTNet network in the eastern U.S. [9].

Kriging analysis is also applied for other environmental applications such as soil and

groundwater modeling. EPA’s Preparation of Soil Sampling Protocols document recommends
the use of block kriging for “soil mapping, isopleth development, and spatial distribution of soil
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and waste properties” [10]. A 1997 report by the Kansas Geological Survey utilized universal
kriging to estimate water table elevation levels in Kansas [11]. In this case, universal kriging was
applied because of a systematic decrease in the water table toward the east of the state. These
researchers used kriging not just for predicting water levels, but for identifying outlier measured
values that might contain measurement error. They performed this quality control analysis
through cross-validation, i.e., estimating a value for a measured point based on all other data
except that point, and then comparing the predicted value to the measured value.

For a 1990 inter-agency National Acid Precipitation Assessment Program report,
researchers utilized kriging techniques extensively to evaluate proposed monitoring networks and
acid deposition models [12]. One application of kriging in this report was to produce maps of
observed and predicted levels of different pollutants for comparison purposes. Another
application was to evaluate kriging uncertainty estimates to determine the suitability of different
network configurations.
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The sources for kriging examples are numerous. In addition to the specific cases listed
here, we encourage the reader to consider plentiful sources such as Mathematical Geology or the
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3.0 THE ORDINARY KRIGING MODEL

As discussed in Section 2, kriging is a geostatistical spatial (and temporal, potentially)
interpolation method that derives predicted values based on the distance between points in space
and the variation between measurements as a function of distance. Ordinary kriging is a version
of kriging that assumes the mean is constant but unknown across the spatial domain of interest.
This section will describe some of the theory behind kriging and walk the reader through some of
the mechanics of an ordinary kriging exercise.

Before beginning, it is important to recognize that the real-world is made up of four
dimensions; three spatial dimensions and a time dimension. Furthermore, real-world spatial
correlations often exhibit directional behavior (anisotropy) and/or lack of stationarity. For the
purposes of illustration, this section and much of this document focus on a simpler representation
of the real-world; namely, two-dimensional space, a fixed point in time, and spatial correlations
that do not depend on direction (isotropy). More complex spatial interpolation approaches that
address issues such as temporal dynamics and anisotropy, as well as other issues such as trends,
covariates, and multivariate modeling, are discussed in Section 4.

Let Z represent the spatial process of interest (e.g., 0zone 8-hour average concentrations
or PM, ¢ annual average concentrations). Let x represent some measure of west-to-east relative
location such as longitude, and let y represent some measure of north-to-south relative location
such as latitude. (Strictly speaking, kriging is defined on coordinate systems for which distances
are linear. Except as an approximation, this is not true for latitude and longitude. We address
this concept in more detail in Section 3.1) Thus, Z(x,y) represents the realization of the process
of interest at the point in space (x,y). Ordinary kriging provides a statistical model for the
process of interest, Z(x,y), at all points in space, (x,y), within some well-defined spatial domain
or region (e.g., an EPA Region, a State, some arbitrary rectangle or polygon, etc.). Ordinary
kriging defines the process as follows:

Z(x,y) =u+e(xy), (Eq. 1)
where
u = the overall, large-scale mean of the process across the spatial domain; and
e(x,y) = the small-scale random fluctuation of the process within the spatial domain.

Conceptually, a model like Equation (1) divides the spatial process into two components:
a large-scale mean trend component, u, and a small-scale random fluctuation component, e(x,y).
Unlike many statistical modeling exercises, ordinary kriging places very little emphasis on the
large-scale mean trend component, choosing to treat this component of the model as a simple
constant, u, that does not depend on location, (X,y). An ordinary kriging modeling exercise is
instead focused on carefully modeling the structure and behavior of the small-scale random
fluctuation component, e(x,y). Variations and extensions of the ordinary kriging model are
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presented and discussed in Section 4, including approaches that place more emphasis on
modeling the structure of the large-scale mean component.

In practice, ordinary kriging, for the purpose of spatial interpolation, might be
implemented via the following five steps:

Step 1: Build the analysis data set

Step 2: Summarize and understand the data

Step 3: Conduct a variogram analysis

Step 4: Apply spatial prediction and uncertainty formulas
Step 5: Evaluate model performance through diagnostics

The first two steps are necessary and important before embarking on an ordinary kriging
modeling or other spatial interpolation exercise. The purpose of the variogram analysis in the
third step is to model the structure and behavior of the small-scale random process, e(x,y), of
model Equation (1). These results are then used as input for the fourth step, which applies
ordinary kriging equations for spatial prediction and uncertainty estimation to generate a
spatially-interpolated surface of the process Z(x,y) and, likewise, a surface of the model’s
prediction uncertainty. In the fifth and final step, formal and informal diagnostics may be
checked as part of a quality assurance/quality control (QA/QC) assessment of the model’s
performance. (See also Section 5 for a broader perspective on model evaluation.) Depending on
the level of stakeholder satisfaction with the initial results of this step-by-step process, it may be
necessary to re-visit and possibly modify some or all of these steps. The following sections
discuss them in turn.

3.1  Step 1: Build the Analysis Data Set

The most basic data set required for any two-dimensional spatial interpolation exercise
consists of three variables: the process of interest (Z), a measure of location in the first spatial
dimension (x), and a measure of location in the second spatial dimension (y). The variables x
and y are often longitude and latitude, respectively. Table 3.1 provides an abbreviated example
for a data set of annual average PM, . concentrations that will be used in a case study example
presented throughout this section and other parts of this document. There often may be one or
more data management or QA/QC issues to address even in those cases that are as seemingly
straightforward as that of Table 3.1. Several common issues are discussed below.
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Table 3.1 Example analysis data set for two-dimensional spatial interpolation

Z = PM,, annual average (- g/m°) x = longitude y = latitude
12.0759 -81.3456 28.5508
11.8871 -81.3631 28.5994
10.9991 -81.3100 28.7456
10.4941 -82.7000 28.9806
11.0013 -82.1008 29.1703
15.8305 -83.2092 42.2283
14.9955 -89.0894 42.2672
14.8023 -85.5419 42.2781

Temporal Averaging and Completeness Criteria

The basic assumption of this document is that the purpose of the modeling exercise, be it
ordinary kriging or otherwise, is spatial interpolation. No attempt is made to address any
temporal dynamics associated with the problem. With that perspective in mind, it remains
important to define and understand the temporal scale of the problem. In general, this scale
should be chosen to match the management decision needs. For example, the data set to be used
for analysis will be different if the goal is to spatially interpolate a PM, . 24-hour average
concentration versus a PM, ; annual arithmetic mean concentration. Furthermore, the results of
the spatial interpolation exercise and their associated interpretation may vary dramatically
depending on the temporal scale of the data.

Often it is the case that an initial data set will require pre-processing to generate analysis
data that better match the spatial process of interest with respect to temporal scale. This can be
accomplished via some sort of temporal averaging of the initial data. For example, a data set of
1-hour ozone concentrations might be averaged in some manner to yield 8-hour concentrations
for analysis. Note that some loss of information occurs when temporally averaging data, as
opposed to modeling the original data and somehow taking advantage of the information
provided by its inherent temporal variation. For simplicity, this section and most of the
document assume that the simpler approach of temporal averaging will typically be employed to
model the spatial process at the direct temporal scale of interest. This document does not
necessarily advocate such an approach, but recognizes its practicality. The discussion that
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follows highlights some of the issues that arise due to temporal averaging. See Section 4 for
more discussion on incorporating temporal dynamics into a spatial interpolation modeling
exercise.

In many instances, the approach to temporal averaging may be dictated by some form of
guidance or regulation, or by the management decision at hand. In other instances, the approach
will be determined in a more subjective manner, preferably through the informed consensus of
engaged, knowledgeable stakeholders. For the PM, . case study example presented throughout
this section, the annual average analysis data set summarized in Table 3.1 was generated from an
initial data set of 24-hour averages. (As stated above, this document does not necessarily
advocate data pre-processing via temporal averaging, but this approach was taken for the PM, ¢
case study example for illustrative purposes.) Site-specific annual averages were calculated as
the arithmetic mean of the 24-hour average data collected at the given site throughout calendar
year 2000. The majority of the sites included in the case study example data set provided data
consistent with a sampling schedule of once every three days.

When pre-processing an initial data set via temporal averaging, some consideration must
be given to the temporal completeness of the resulting average. If the initial data used to
generate an endpoint such as an annual average are somehow temporally incomplete, the
calculated endpoint may be biased in some manner. For example, many air pollutants exhibit
significant seasonal fluctuations, so an annual average estimated from only a single quarter’s
worth of data (e.g., January through March) may not be representative of the true year-long
average. It may, therefore, be important to define certain temporal completeness criteria that
determine whether the temporally-averaged data at specific locations should be included in the
analysis data set. Ultimately, a balance must be struck between a more (less) strict temporal
completeness requirement and a more (less) sparse spatial analysis data set. For the PM,  case
study example presented throughout this section, it was decided that all four quarters throughout
the year had to provide at least 75 percent of the expected number of 24-hour average
observations according to a given site’s known or estimated sample frequency. For example, a
sampling schedule of every three days leads to approximately 120 samples per year or 30 per
quarter, which results in a 75 percent completeness requirement of at least 23 observations in
each of the year’s four quarters.

Another issue to consider when pre-processing the data via temporal averaging is the
impact of the averaging on the assumed variation (variability + uncertainty) structure of the
resulting data points. Ordinary kriging and many other statistical spatial interpolation procedures
assume a common variogram model (and, hence, variance) across all the analysis data points. An
initial data set may indeed satisfy this basic assumption if the data have been generated via
consistent monitoring technologies with common QA/QC oversight. However, any
temporally-averaged data derived from the initial data set might not strictly satisfy the common
variance assumption if the sample frequencies of different sites vary. For example, all else being
equal, it is expected that a site-specific annual average calculated from 24-hour average samples
collected every three days will be more precisely estimated than one calculated from samples
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collected every twelve days. While this issue merits some consideration, it is beyond the scope
of this document and will not be addressed further.

Method Detection Limits

For the purposes of this document, a method detection limit (MDL) is defined as that
threshold level below which a laboratory analysis does not report an air pollution concentration
data point, but instead censors the output and reports only the MDL and the fact that the
concentration in question falls below the MDL. This censoring occurs because a laboratory
cannot state with confidence that a given observation is significantly different from zero. In
practice, a laboratory will typically use data generated as part of its routine quality
assurance/quality control (QA/QC) procedures to calculate a MDL as some multiple of a standard
deviation representing analytical uncertainty. As of the writing of this document, there remains
some variation in exactly how laboratories calculate MDLs and how they report below-MDL
data. Nonetheless, the issue of censored data or below-MDL data may need to be addressed in
some cases before beginning an ordinary kriging exercise, because such data may induce bias in
the overall analysis. (Further details on this topic are beyond the scope of this document.)

The most common data analysis approach to handling below-MDL data is to impute a
value for the censored data then treat the imputed values as real data. A typical imputation
technique is to replace a censored data point by one-half of the reported MDL value for that
observation. More sophisticated techniques include estimating the parameters of an assumed
statistical distribution using the available uncensored data, then simulating values for the
censored data according to the estimated parameters. Regardless of the imputation (or other)
approach to addressing below-MDL data, two general recommendations can be made. First,
consideration should be given to the level of MDL beyond which it may not be appropriate to
include a given site’s data or, more importantly, beyond which it may not be appropriate to
proceed with the intended ordinary kriging exercise. Second, some sort of sensitivity analysis
should be conducted as part of the overall modeling exercise to assess the degree to which the
method, or alternative methods, of addressing below-MDL data impact the results of the analysis.

Spatial Coordinate System

Air pollution data with spatial context, monitoring data or otherwise, are commonly
reported in a longitude by latitude coordinate system in units of degrees, minutes, and seconds.
Such a coordinate system accounts for the curvature of the earth’s surface. Meanwhile, statistical
spatial interpolation techniques such as ordinary kriging typically assume some sort of spatial
correlation structure defined with respect to the linear distance between two points in space.
Therefore, it is not strictly accurate to calculate the distance between two points in a longitude by
latitude coordinate system using a simple linear distance function. In many cases, if the spatial
domain under study is small enough in geographic extent, the error in such a calculation will be
minimal. Perhaps counter to intuition, this is not due to an equality of degrees latitude to degrees
longitude at small scale, but rather due to the fact that for small scale the distance represented by
one degree longitude is approximately equal at all points in the space. This is not necessarily true
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at large scales. In other cases, it may be more appropriate to take the time to convert from a
latitude by longitude coordinate system to a relative coordinate system of west-to-east and north-
to-south linear distance (e.g., kilometers, miles, etc.) from some arbitrary reference point (e.g.,
the first data point in the analysis data set).

When working in (or starting from) a longitude by latitude coordinate system, the
following set of formulas may prove useful for calculating approximate linear distances between

observations:
2 2
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where B = pi .3.14159, x; = longitude of location i (i=1,2), y; = latitude of location i (i=1,2), cos
represents the cosine function, and sin represents the sine function. R represents the radius of the
earth and is approximately equal to 6,367 kilometers or 3,956 miles. The distance results from
the formula are more accurate than relying on longitude by latitude coordinates alone because the
formula accounts for the curvature of the earth. It can be used as a tool, for example, to ascertain
constant longitude by latitude degree distances throughout the spatial domain under study. To
the extent that those distances vary across the domain, some modeling error will be introduced
due to ordinary kriging using the original longitude by latitude coordinate system. The larger the
spatial domain, the more this becomes an issue. (Note that the above formula is still only an
approximation because it treats the earth as if it were shaped like a perfectly round ball.
Additional formulas for estimating such distances can be found at:
http://www.census.gov/cgi-bin/geo/qgisfag?Q5.1 )

3.2  Step 2: Summarize and Understand the Data

Once the spatial analysis data set has been built, it is important to generate some initial
summaries of the available data prior to analysis in order to obtain a better understanding of its
empirical structure and behavior. Reasonable summaries include, but are not limited to,
graphical information systems (GIS) maps of the spatial domain and available data locations, a
histogram of the overall data distribution, and summary statistics such as the data’s mean,
standard deviation, and various percentiles (e.g., minimum, median, maximum, etc.).
Moving-window statistics (i.e., summarizing different sub-regions of the spatial domain) are
particularly helpful for assessing the ordinary kriging stationarity assumptions (i.e., constant
mean and constant variogram model across the spatial domain).
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Consider the PM, ; annual average case study example discussed throughout this section.
Defining a rectangle covering much of the eastern United States as the spatial domain of interest,
Figure 3.1 displays monitoring locations within this domain that provide data for use in an
ordinary kriging exercise. For perspective, Figure 3.1 overlays state boundary lines. A total of
363 locations provide data. While the total number of monitoring locations is a reasonably high
number and most of the domain exhibits some monitoring, the spatial distribution of available
data for analysis is far from evenly distributed across the domain. In fact, as expected, much of
the available data tend to come from clusters of monitors within urban centers or areas of
generally higher population density.

If information about the entire spatial domain is equally important, and if no prior
knowledge about the spatial surface is available, then for spatial interpolation via ordinary
kriging or other methods, it can be desirable to have a uniform, dense spatial grid of data for the
purposes of prediction. In reality, the data analyst is constrained to whatever useful data might
be available. In the instance of the PM, . case study example, the FRM monitoring network was
not necessarily designed for the express purpose of conducting spatial interpolation modeling
exercises. As such, to the degree that PM, ; annual average concentrations correlate with
population density, ordinary kriging results from these data will be influenced by the
population-oriented siting tendencies of the network. To address this issue, other modeling
approaches that account for explanatory factors such as population density (or terrain, emission
sources, meteorology, etc.) might be considered in order to reduce the uncertainty in the results
that is due to the data collection design. For the most part, this issue is beyond the scope of this
document. It is, however, addressed in further detail within Section 4.

Continuing with the PM, ; annual average case study example, Figure 3.2 divides the
spatial domain along longitudinal and latitudinal lines into nine sub-regions of roughly equal
area. The figure indicates the number of monitoring sites falling within each sub-region. The
purpose of this type of data partition (i.e., moving windows) is to provide further summaries of
the data overall and within each spatial sub-region in order to support the ordinary kriging
model’s two stationarity (homogeneity) assumptions; namely, that the mean is constant across the
spatial domain and that the variogram is the same model for all data across the domain. In
general, such analyses provide the data analyst with a better understanding of the data.

Corresponding to the partition indicated by Figure 3.2, Table 3.2 and Figure 3.3 provide
similar information in tabular and graphical format, respectively, on the distribution of the case
study data both overall and specific to each spatial sub-region. While no strong trends appear,
sites in the western third of the region appear to exhibit somewhat lower concentration
distributions, while sites in the central, northern, northeastern, and eastern sub-regions appear to
exhibit somewhat higher concentration distributions. To the degree that significant large-scale
spatial trends and/or non-stationary covariances exist, a more sophisticated model than ordinary
kriging may be warranted (see Section 3.5 and Section 4 for further discussion).
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Table 3.2 Distribution (summary statistics) of annual average PM, . values by spatial
sub-region within the domain of interest for the case study example

Number Spatial Variation in Annual PM, , Concentrations (- g/m?)

Block 1 of sites Mean SD Min Q1 | Median| Q3 Max
ALL 363 14.85 243 9.71 13.15 15.10 16.43 22.28
NW 38 11.38 1.03 9.82 10.76 11.07 11.92 13.45
N 88 15.82 1.63 12.01 14.95 15.75 16.75 20.64
NE 50 16.22 1.84 10.39 15.33 15.97 17.61 20.87
W 25 12.40 1.82 9.71 10.86 12.29 13.53 15.83
C 32 16.63 2.20 13.29 15.12 16.26 17.86 22.28
59 16.10 1.68 12.44 14.87 16.11 17.22 21.01

SW 29 12.95 0.87 11.24 12.47 12.91 13.38 15.05
S 21 14.40 1.68 12.22 13.47 14.03 14.93 19.26
SE 21 13.53 2.37 10.49 11.86 13.37 15.34 18.31

Y

Figure 3.1  Spatial distribution of PM, . monitoring sites
within domain of interest for case study

example.
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3.3  Step 3: Conduct a Variogram Analysis

Once the analysis data set has been built and explored to gain some basic understanding, a
formal ordinary kriging modeling exercise can begin. The exercise begins by conducting a
variogram analysis. This analysis typically consists of first generating an empirical variogram
and then fitting a parametric model that adequately captures the structure of the empirical
variogram. [Note that non-parametric models might be entertained as well, but they are beyond
the scope of this document. See Cressie (1993) for further discussion of non-parametric
estimates.] Ultimately, the estimated parameters of the variogram will be input into for the
ordinary kriging spatial prediction and uncertainty formulas from which a spatially interpolated
surface is generated. In other words, once you have chosen a satisfactory variogram model, you
then use that model as an input to the actual kriging process as described in Section 3.4. To
illustrate the concept of variogram analysis and to aid the reader in understanding the process, the
following discussion presents an ordinary kriging exercise conducted using the annual PM, . case
study example data discussed previously.

The first step in generating an empirical variogram is to partition the data according to the
distance between distinct pairs of observation locations. There appears to be little guidance on
the optimal size of the partitions (or bins). Cressie (1993) recommends that the bins be as small
as possible to retain spatial resolution, and yet large enough that the empirical variogram estimate
is stable. Journel and Huijbregts (1978) recommend that the number of pairs in each bin be at
least 30. An alternative recommendation is based on the similarity of the process of generating
an empirical variogram to the process of generating a histogram. This recommendation is to use
a number of bins approximately equal to the square root of the number of available data points.
For an example of 400 total pairs, this approach would yield 20 bins with 20 pairs per bin. It
represents a compromise between the number of bins and the number of pairs in each bin.
Finally, certain software packages provide a default number of bins. For example, the empirical
variogram window in S-Plus’s spatial module defaults to 20 bins, though this can be changed
easily.

A completely different choice would be to use no bins at all. This approach is referred to
as a variogram cloud and plots the squared difference of two observations on the y-axis against
the distance between the same two observations on the x-axis. This is repeated for all possible
pairs of observations in the data set. The resulting scatter plot (or cloud) of observations will
tend to have the general shape of the appropriate variogram model (see below). As a result, the
variogram cloud may often be useful to an analyst who wishes to predetermine what model
family is most appropriate for the ordinary kriging process.

Once the bin structure for distances has been determined, apply the following formula to
the contents of each bin to generate a function that changes across bins:

((h) = average[ ( Z(x,,Y1) - Z(X2Y2) )* 1 (Eq. 2)
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where ( (i.e., gamma) is the resulting function dependent on bin, h is the bin number, Z is the
response of interest (e.g., a PM,: annual average), and (x1,y1) and (x2,y2) describe locations in
space in terms of the spatial coordinate system of choice (e.g., longitude and latitude). The
average is taken over all the pairs of points whose distance falls into bin number “h”. The bins
can be defined in terms of the distances they include. For example, a set of bins for a
hypothetical analysis might represent 0-10 kilometers (km) with midpoint 5 km, 10-20 km with
midpoint 15 km, 20-30 km with midpoint 25 km, and so forth. Plotting this set of averages
against the midpoint distance of the associated bin provides a graph of the empirical variogram
(i.e., the value of ( as a function of distance). See Figure 3.4 for an example of such a graph.

Next, consider a suite of parametric models to find the best fitting estimate for the
empirical variogram. Though other parameter fitting methods are possible, in general, the most
appealing and common approaches are least-squares-minimization via the objective function and
trial-and-error via visual inspection. For the former, one numerically computes the set of
parameters that minimizes the objective function. The objective function is defined as the sum of
the squared residuals (obtained when the proposed parametric model is subtracted from the
empirical variogram), and provides a measure of the fit of the proposed model to the empirical
variogram [see Cressie (1993) for further details]. For the latter, one chooses the set of
parameters that gives the best visual fit. Occasionally, it may be necessary to use a combination
of these two methods. For instance, one might choose the type of model from the options
discussed below and then compute the variogram parameters that provide the best least squares
fit for that model family. This will be discussed in more detail later in this document.

A number of parametric models suit the variogram modeling process. [Note that the
formal definition of the variogram requires that certain statistical properties hold. All of the
models discussed here fulfill these properties. These required properties also make
non-parametric variograms more difficult, but not impossible, to fit. See Cressie (1993) for
further details on this topic.] The most common models used in the variogram modeling process
are: linear, spherical, exponential, rational quadratic, wave (or hole-effect), power, and
Gaussian. Cressie (1993) discusses all of these models except the Gaussian in some detail,
providing mathematical formulas and further details. Of these seven variogram models, three are
used most commonly: spherical, exponential, and Gaussian (see Figure 3.4b). Exponential
models fit best when the spatial autocorrelation decreases exponentially with increasing distance.
Spherical models provide a better fit when spatial autocorrelation decreases to a point after which
it becomes zero. Gaussian variograms tend to have an “S” shape, with a gradual upward slope at
short distances, followed by a sharper upward slope at middle distances and, finally, by another
gradual upward slope at long distances. A more complicated approach uses nested models and,
in essence, sums two or more of the above types of models together to determine the final
variogram model. [See Cressie (1993) for more details.] The final model selected will represent
the spatial correlation of the measured data and guide the assignment of the kriging weights in
the second part of the process (discussed below in Section 3.4).

The three most common models also share defining parameters: nugget, sill, and range.
See Figure 3.4a for a visual depiction of these parameters. Additional technical details about
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these terms can be found in Cressie (1993) and Ripley (1981). Briefly, the nugget parameter
represents the variation due to measurement error and micro scale variation (i.e., variation at very
short distances). It is the point at which the variogram model appears to intercept the y-axis.
Theoretically, in a measurement-free environment, the variogram value could be zero at zero
separation distance; however, at very small separation distances variograms often appear to have
positive variances because of measurement error or spatial sources of variation that are smaller
than the distance between sampling locations. Put another way, the variogram will always be
defined to be equal to zero at zero separation distance, unless the model formally includes
measurement error and/or micro scale variation. (Note that including a non-zero nugget
parameter in a kriging model results in a spatially interpolated surface that does not necessarily
pass directly through the observations.) The range parameter represents the spatial distance after
which data are effectively no longer spatially correlated, or autocorrelated. The sill parameter
describes the maximum value of the variogram minus any nugget effect. In some sense, the sill
can be interpreted as the maximum variance associated with the surface itself, after the effects of
measurement error have been removed. Some authors refer to the maximum variance, when the
measurement error is included, as the total sill. These parameters will define how spatial
predictions are calculated in the next step of the kriging process (discussed below in Section 3.4).

Several important issues to consider when conducting a variogram analysis are discussed
in the following sub-sections. In particular, we consider manually estimating variogram
parameters, software, interpreting results, and the effects of temporal averaging.

sill = 5.25 (total sill = 7.00)

)
o o o
© - © -
S o

spherical

exponential

gamma
gamma

° .
~7 ° nugget = 1.75 o Gaussian

range = 6.50

©q objective = 10.5132 o -
T T T T T T

0 2 4 6 8 10 0 2 4 6 8 10

distance distance

(a) (b)

Figure 3.4  Direct comparison of three model families.

27



Manually Estimating Variogram Parameters

Consider the three most commonly used parametric variogram models: spherical,
exponential, and Gaussian. When attempting to model one of these types of variograms via
trial-and-error visual inspection, there are some guidelines that can be applied when starting the
process. In general, when visually estimating variogram parameters, it is important to note that
not all empirical variogram points are equally important when it comes to developing model
variograms. Short distances are most important since they have the greatest impact on prediction
and prediction errors. Long distances may be generated with fewer observation pairs due to the
geometry of the spatial sampling locations, and, therefore, the variogram model fit at such
distances may be more uncertain as a result. In addition, a large number of values at or near the
sill will tend to dominate any automatic fitting algorithms (and, thus, the objective function).
Thus, one might consider trimming some of the empirical values that are beyond the range out of
the variogram modeling process.

Model Family. When attempting to determine what model to apply to an empirical
variogram, one can get information by a visual inspection of the shape of the variogram (see
Figure 3.4b). For example, as stated previously, Gaussian variograms tend to have an “S” shape.
That is, they exhibit a gradual upward slope from distance zero, followed by a sharper upward
slope toward the middle of the variogram, and finally another gradual upward slope at the end of
the variogram. On the other hand, both the spherical and exponential variograms start sloping
upward more sharply at distance zero. Of the two, the exponential variogram tends to have more
gradual behavior. The exponential curve tends to be more sharp than the Gaussian and spherical
models at the beginning. The exponential curve also tends to become shallow more gradually
than the spherical variogram, which tends to have the same slope until it nears the sill at which
point it tends to become nearly flat.

Nugget. If co-located data are available in a data set, then an estimate of the
measurement error can be obtained. In this case, the average of observations at a single location
are used to compute the value applied to the computation of the empirical variogram, but the
average of the sum of the squared deviations from those co-located observations is an estimate of
the variance of the measurement error. The estimate can be used as a lower bound for the nugget,
or even as an estimate of the nugget itself, if one assumes that there is no micro scale variation.
As an example, consider the PM, . annual average data set used throughout this document. In
this case, the estimated variance of only the co-located observations in the annual data is
0.18772 [-g/m*)%. However, upon using S-Plus software to estimate the nugget that minimizes
the objective function, the value is an order of magnitude larger. This suggests that, for this
example, there is either an important micro scale variation term in this spatial analysis or an
inappropriate numerical optimization. In situations like this, where one value is a great deal
smaller than the other, it is recommended that one take the approach of using the average of the
two values to estimate the nugget. Choosing one extreme or the other will have implications for
both the associated kriging surface and on the estimates of the standard deviations. As a result,
the reader is cautioned to take care to examine the data and the results before choosing one
extreme or the other for the nugget.
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If the values are approximately the same, this suggests that both are estimating the true
nugget value with error and, thus, in this case it may be appropriate to use the average of the two
values as a revised estimate of the nugget. As a final note on estimating the nugget, another,
perhaps more crude, estimate is the straight line extrapolation back from the minimum bin
distance of the empirical variogram to the y-axis.

Sill. For any data set, a reasonable estimate of the sill can be obtained by inspecting the
empirical variogram at large values of the distance. In practice, the empirical variogram tends to
flatten out at large distances, indicating an empirical sill. Thus, it may be appropriate to use
either the largest computed empirical variogram value, or the value of the empirical variogram
associated with the longest distance, to compute an estimate of the sill. To gain a true estimate of
the sill, it is then necessary to adjust for the nugget by subtracting an estimate of the nugget.

Both of these suggestions are based on a single value. Another suggestion would be to use the
average of the empirical variogram values that make up the plateau at long distances. For
example, one might use the average of the last seven empirical variogram values shown in
Figure 3.4a.

Range. An empirical estimate of the range is less obvious. One might compute the
optimal (least-squares) estimate of the range given any estimates of the sill and nugget computed
as discussed above. In other words, fix the values of the sill and the nugget, then let software
such as S-Plus provide a solution for the range parameter given the assumed values of the sill and
nugget. If one is confident in the sill and nugget estimates used in this manner, choosing a
numerically optimal range might be a way to improve one’s overall estimate of the variogram
model. If one chooses to use empirical, or inspection-based, parameters in modeling the
variogram, several iterations may be necessary to refine the parameters so that the visual match
to the empirical variogram is improved, or so that the objective function is minimized. Another
way to empirically estimate the range is to consider the plateau of empirical values that occur at
long distances, as discussed above. By definition, the range is the distance at which the data are
no longer autocorrelated. Another way to think about this is the distance in the variogram after
which no more variance accumulates. On the variogram, this is the distance at which the plateau
starts. Thus, identifying such a plateau in an empirical variogram might provide empirical
information about the range as well as the sill.

Software Considerations

Various software packages, including Surfer, GMS, and others, will compute the
empirical variogram and assist in the modeling process. Among these, two statistical packages
are noteworthy and were used in the development of this document: SAS and S-Plus. Both
packages have different strengths and weaknesses. SAS, in general, appears to be more flexible
than S-Plus, but it requires understanding of SAS programming. SAS does not provide much in
the way of automatic defaults or computation of parameters, though standard parameter
estimation functions can be used, in conjunction with the variogram functionality, to model the
process.
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S-Plus, on the other hand, with the addition of its spatial module, has been designed to
minimize the level of technical knowledge required on the part of the user. S-Plus provides a
series of menu-accessed functions to process a data set. In many cases, these functions will cause
parameters to default to functional values if they are not specified by the user. For instance,
when computing the empirical variogram, S-Plus defaults to 20 bins. In addition, when
investigating variogram models, S-Plus’s spatial module provides functionality to estimate the
necessary parameters for a given model of interest. For example, when considering a spherical,
exponential, or Gaussian model, S-Plus will provide estimates for the nugget, sill, and range upon
request. S-Plus also provides the value of the objective function, the numeric measure of model
fit, so that the user can consider model fits using both visual inspection and numerical
comparison. Using S-Plus, Figure 3.5 plots a variogram model (solid curve) fit to the associated
empirical variogram (circles). In determining if the model fit is appropriate, the data analyst
should consider both how well the proposed model line matches the points of the empirical
variogram as well as the magnitude of the objective value (shown in the lower right corner of
Figure 3.5).

The reader is cautioned that though defined properly in its documentation, S-Plus uses
“range” interchangeably for the “a” parameter used to define the spherical, exponential, and
Gaussian variogram functions. It is important to understand that “a” is identically equal to
“range” only for the spherical variogram definition. In general, S-Plus’s definition will be used
in the examples in