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1 Introduction

“Environmental Justice” (EJ) has become a pressing social, scientific and political issue over the
last decade. The 1994 Executive Order 12898, Federal Action to Address Environmental Justice
in Minority Populations and Low-Income Populations, requires agencies to perform EJ reviews
of their programs, policies, and activities in order to determine their effects on minority and low-
income populations. EPA defines “Environmental Justice” as the fair treatment and meaningful
involvement of all people regardless of race, color, national origin, or income with respect to the
development, implementation, and enforcement of environmental laws, regulations, and
policies.1 EPA further defines “fair treatment” to mean that no group of people should bear a
disproportionate share of the negative environmental consequences resulting from industrial,
governmental and commercial operations or policies. This definition provides very general
guidance on the concept of environmental justice, but does not supply specifics and directions
for applying this concept to EPA’s programs and activities.

The two most common types of EJ research or distributional analysis are: (1) proximity-to-
hazards studies and (2) exposure and health risk analysis. The first category of research evaluates
how the distribution and proximity of hazards (e.g., Superfund sites, toxic emissions, and
existing waste facilities) relate to community demographics (see Glickman and Hersh, 1995;
Stretesky and Lynch, 1999; Davidson and Anderton, 2000; Hite, 2000; Mantaay, 2002).
Residential proximity to a waste site or other hazard is often used as a surrogate measure for
exposure to contaminants found at those sites. The second category of EJ research, exposure and
risk analysis, examines the distributions of exposures and health risks among different socio-
demographic groups (see Gwynn, et al., 2000; Apelberg, et al., 2005; Morello-Frosch and
Jesdale, 2006; Levy, et al., 2007; Linder, et al., 2008).

In this document, we discuss a method for carrying out the second type of distributional analysis
as we analyze the benefits of an air pollution control regulation. There are several potentially
interesting EJ questions that our analysis attempts to answer. These questions address potential
inequality in (1) baseline levels of pollutant exposure, (2) reductions in levels of exposure that
are expected to result from a pollution rule or regulation, and (3) health benefits associated with
the reductions in pollution levels. These types of questions can be summarized as follows:

 Are different socio-demographic subgroups being exposed to significantly different
pollution levels?

 When a given rule is implemented, do different socio-demographic subgroups benefit
differentially – i.e., do some groups enjoy significantly greater reductions in pollution
levels than others?

 Do some groups enjoy significantly greater reductions in health risks as a result of a
given rule or regulation?

1 The definitions of “Environmental Justice” and “Fair Treatment” are from EPA website:
http://www.epa.gov/region07/ej/definitions.htm



Abt Associates Inc., November, 2008 5

The answer to the first question may depend on the particular pollutant, or on the sources of the
pollutant. For example, different socio-demographic groups may be exposed to significantly
different levels of one pollutant but not another. The answer to the second question may also
depend on the particular rule or regulation. The answer to the third question will depend, in
addition, on the age distributions and baseline incidence rates (for the health effects in question)
of the socio-demographic groups being compared.

Below we describe an analytical approach that can address all of these questions by examining
and comparing the distributions of individual-specific exposure (or health risk) levels and/or
changes in these distributions in different (non-overlapping) subgroups defined by age, sex, race,
ethnicity, education and/or income. To illustrate our proposed approach to distributional analysis
of air quality rules, we provide a case study where we apply our method using data from an
analysis of EPA’s Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur
Control Requirements (HDD) Rule (U.S. EPA, 2000).
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2 Methods

2.1 The Basic Steps in a Distributional Analysis

The first step in a distributional analysis is to define the subgroups to be compared. Subgroups
in distributional analyses have most commonly been defined by race, ethnicity and/or income.
Other categorizations (e.g., urban vs. rural, attainment area vs. non-attainment area) are also
possible. Since our main objective is developing a method for conducting a distributional
analysis and because of limited resources, we focus on race and ethnicity in our case study, with
the recognition that the same method could be used with other categorizations

The next step in a distributional analysis is to select a unit of analysis. Distributional analyses
have often taken as their unit of analysis some measure of community, such as county (e.g.,
Perlin, et al., 1995; Bowen, et al., 1995), neighborhood (e.g., Bullard, 1994), radial zone (e.g.,
Glickman and Hersh, 1995), Census tracts (e.g., Davidson and Anderton, 2000; Linder, et al.,
2008; Apelberg, et al., 2005; Morello-Frosch and Jesdale, 2006) and zip codes (e.g., Lejano and
Iseki, 2001). There are, however, some substantive problems with this approach.

First, defining a community is a non-trivial and subjective task. As noted above, different units
of analysis have been used, varying substantially in size. Several studies have found that units of
different size can generate different results (see Taquino, et al., 2002; Williams, 1999; Mennis,
2002). Moreover, because a community is made up of a mixture of people from different
subgroups, we may misclassify people when examining whether one subgroup is exposed to
more pollution than another. For example, if a community has 60% of its households below the
poverty level and is categorized as a “low income” community on that basis, the 40% of
households in that community above the poverty level are effectively mischaracterized. A
similar problem arises in the categorization of “EJ communities” in terms of race or ethnicity.

We suggest that the ideal analysis would use the individual, rather than the community, as the
unit of analysis. This avoids the issues raised above, although it raises an empirical problem in
that we do not have air pollution estimates for each individual. Truly individual-specific
estimates of air pollution exposure would require personal monitoring, which is not feasible for
analyses of large numbers of people. As a result, we simplify and assume that individuals living
in close proximity to each other are exposed to the same air pollution levels. We discuss this
further below.

Our proposed individual-based method for distributional analysis calculates an empirical
distribution of baseline pollutant exposures for each defined subgroup of interest. A subgroup-
specific distribution describes the frequency with which each pollutant concentration is
experienced by members of the subgroup. Thus, for example, for all pollutant concentrations
(q1,q2,…,qQ) to which members of the subgroup are exposed, we calculate the following:

fq=nq/N, (1)
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where nq is the number of individuals who are exposed to pollutant level q and N is the total
number of individuals in the subgroup.2 Correspondingly, fq is the frequency with which
exposure to pollutant level q occurs in the subgroup (i.e., the proportion of the subgroup exposed
to pollution level q). A distribution of the changes in pollution exposures is similarly defined.3

In addition to the proportion of the population, fq, exposed to a specific pollutant level, q, we
may be interested in the proportion of the population that is exposed to pollutant levels that are
no more than q. Using the notation above, this is4

q

q

i

i
q ffff

N
n

F 









...210
0

. (2)

The next step in a distributional analysis is selecting measures of comparison and means of
presentation. There are several ways to compare the baseline pollutant levels to which
individuals in one subgroup are exposed versus those in another subgroup – and similarly several
ways to compare reductions in pollutant levels experienced as a result of a rule or regulation.
Ultimately, a distributional analysis compares two or more subgroup-specific distributions – of
baseline pollutant concentrations and of reductions in pollutant concentrations that result from a
rule or regulation. Distributions can be compared using a single summary statistic – e.g., by
comparing the means of the distributions. Alternatively (or in addition), they can be compared
using several summary statistics – e.g., the means as well as several percentiles of the
distributions. These comparisons can be shown via maps, graphically, and/or in tabular form.
In addition, several measures of inequality have been developed and applied in distributional
analysis such as the Generalized Entropy indicator and the Atkinson index.5

In our case study, presented below, we illustrate comparisons of subgroup means (i.e., mean
baseline pollutant exposures and mean reduction in pollutant exposures) as well as more
extensive comparisons using, in addition to means and standard deviations, selected percentiles
of the distributions. We show comparisons via maps as well as graphically and via tables of
results. Finally, we apply two measures of inequality that are particularly well suited to this kind
of distributional analysis.

2 As we note below, whereas ideally we would have truly individual-specific pollutant exposure, in practice we
must approximate this by assigning grid cell-specific pollutant concentrations to all individuals in a grid cell.
This may obscure some intra-grid cell variability and possibly dampen differences among EJ subgroups. This
problem could be mitigated, however, to the extent that we can reduce the size of the grid cells used in the
analysis.

3 The frequency, fq, may alternatively be thought of as a probability – the probability that a (randomly selected)
individual in the subpopulation is exposed to pollution level q. Another name for the distribution described by
equation (1) is therefore a probability density function (pdf).

4 Alternatively, this may be thought of as the probability that a (randomly selected) individual in the population is
exposed to no more than pollution level q. Another name for the distribution described by equation (2) is a
cumulative distribution function (cdf).

5 We present details about inequality measures in Section 2.2.3 and 3.3.2.
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To compare subgroup-specific health benefits resulting from implementation of a rule or
regulation, we could estimate individual-specific decreases in health risk – i.e., for each
individual, the decrease in probability of incurring a given adverse health effect – and thus derive
subgroup-specific distributions of these individual-level risk decreases analogous to the
distributions of individual-level reductions in pollutant exposures. However, a more intuitive
measure of health benefit for a subgroup is the decrease in incidence rate of an adverse health
effect, a population-level measure that is calculated by summing the individual-specific
decreases in risk. For example, suppose that implementation of a rule reduces each African-
American’s risk of a given adverse health effect from 3 in 10,000 to 2 in 10,000. Thus for every
10,000 African-Americans exposed to the pollutant in question, implementation of the rule will
result in 1 fewer case of the adverse health effect, or a decrease in the incidence rate of 1 per
10,000 population.6 To compare the health benefits enjoyed by different subgroups, then, we
compare these subgroup-specific reductions in incidence rates instead of comparing distributions
of individual-specific health risk reduction.

The discussion above describes the basic steps involved in a distributional analysis – (1)
identifying subgroups of interest to compare, (2) selecting a unit of analysis by which to compare
the results across subgroups, and (3) selecting measures of comparison and means of
presentation of these comparisons. The basis of the comparison is the derivation of the subgroup-
specific distributions and the calculation of reductions in health effect incidence rates, which are
explained in Section 2.2 below.

2.2 Conducting a Distributional Analysis in BenMAP

An individual-based distributional analysis may be considered a variant on a standard benefit
analysis, in which, instead of considering the total population, we consider the populations of
each of the delineated subgroups in our analysis separately – i.e., we effectively carry out a
benefit analysis separately for each subgroup and then compare the subgroup-specific results.7

We carry out benefit analyses, and distributional analyses, using the environmental Benefits
Mapping and Analysis Program (BenMAP), a tool developed by Abt Associates for EPA for use
in estimating the health impacts and economic benefits associated with changes in ambient air
pollution. The changes in air pollution are typically calculated with the help of air quality
models, which use air pollution emissions data and meteorological data in a complicated series
of calculations representing the formation and movement of air pollution in the atmosphere. An
air quality model is extremely useful because it can provide estimates of air pollution levels in
broad areas of the country, particularly rural areas, where we do not have actual air pollution
monitoring data, and because it can provide estimates of air pollution levels for hypothetical
scenarios, particularly forecasts for what might happen to air pollution levels in the future.

6 For ease of explanation, this example gives all individuals in the subgroup the same risk reduction. In general, the
change in incidence rate of an adverse health effect within a subgroup (e.g., number of cases avoided per 10,000
population) can be calculated by summing the individual-specific changes in health risk over all individuals in
the subgroup and then multiplying by the number in terms of which the rate is defined – e.g., 10,000 if the rate
is per 10,000 population.

7 For basic information about benefit analysis, Appendix A.1 provides an overview of a typical benefit analysis.



Abt Associates Inc., November, 2008 9

The air quality models calculate air pollution levels separately for each cell in a broad air quality
grid – like estimating air pollution levels in each cell of a checkerboard. Figure 1 provides an
example of what this air quality grid might look like for an analysis of Florida.

Figure 1. Illustration of an Air Quality Grid over the State of Florida

In this particular case taken from the Nonroad Diesel RIA (U.S. EPA, 2004), the grid cells are
roughly 36 kilometers by 36 kilometers. More recent national analyses, such as the Locomotive
Marine Rule (U.S. EPA, 2008), are using grid cells that are roughly 12 kilometers by 12
kilometers. In general, national analyses are becoming more refined over time, and our ability to
process data is improving. With local analyses, such as for individual metropolitan areas, it is
currently possible to have even more refined analyses down to grid cells that are 1 kilometer by 1
kilometer, or smaller.

As we noted earlier, ideally we would want to estimate air pollution for each individual in our
analysis. However, this is clearly impossible when analyzing air pollution regulations affecting
millions of individuals. The size of the grid cells in the air quality model defines how detailed
we can be in estimating exposure for individuals. As a result, we must make the simplifying
assumption that everyone in a grid cell has the same level of pollutant concentration. Depending
on a variety of factors, including the size of the grid cell and the type of air pollutant, there may
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be more or less unobserved variation within a given grid cell, with greater variation having a
greater potential effect on the results of our analysis. We discuss this further in Section 4.

Air quality model grid cells typically cross Census and jurisdictional boundaries, so population
data – a critical component for a distributional analysis – are not readily available for each grid
cell. To calculate the population in each grid cell, we aggregate block data, which is the most
geographically detailed data available from the Census Bureau. Each block generally has a few
hundred individuals.8 If the center of a block falls within a grid cell, then we assign the block’s
population to that grid cell. Figure 9 in Appendix B graphically shows this relationship.

Given air pollution estimates and population data for each grid cell, we can use BenMAP to
compare the pollutant exposures of different population subgroups. In addition, BenMAP
contains health impact functions and baseline incidence rates of health effects that have been
associated with criteria air pollutants. As described more fully below, BenMAP uses these
health impact functions together with the appropriate baseline incidence rates to estimate grid
cell-specific changes in health effect incidence associated with grid cell-specific changes in
ambient pollutant concentrations. The methodological details of benefit analysis carried out in
BenMAP, and the specific inputs used for the Heavy Duty Diesel (HDD) distributional benefit
analysis, are given in Appendix A.

2.2.1 Deriving subgroup-specific distributions of baseline pollutant concentrations

We used BenMAP to determine the numbers of individuals in each subgroup exposed to each
possible concentration of a pollutant in the baseline. In particular, we calculated populations of
each racial and ethnic group living within each grid cell in an input air quality grid. We describe
this in detail in Appendix A.

Recall that the ambient pollutant concentration for a grid cell is assigned to all individuals living
within the grid cell. Because BenMAP calculates the number of individuals in each racial and
ethnic group within each grid cell9, it can assign the grid cell’s pollutant concentration to race-
and ethnicity-identified individuals. For example, if BenMAP has calculated that there are 3,250
African-Americans and 1,750 whites in a grid cell whose annual average PM2.5 concentration is
17 μg/m3, then those 3,250 African-Americans and 1,750 whites will each be assigned an annual
average PM2.5 concentration of 17 μg/m3.

We used this approach to estimate the annual average PM2.5 concentrations to which all
individuals within a subgroup are exposed, for all subgroups, and to derive a frequency
distribution for each subgroup. The same procedure can be used to estimate ambient pollutant
concentrations to which individuals in each subgroup will be exposed in the baseline (absent the
regulation) and in the control scenario (in the presence of the regulation), as well as the

8 Blocks and blockgroups are defined at: http://www.census.gov/geo/www/geo_defn.html. Blockgroups generally
have 600 to 3,000 individuals. Since blocks comprise blockgroups, we estimate blocks generally have a few
hundred individuals.

9 It is possible that some grid cells may not have representation of certain subgroups.
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corresponding reductions in pollutant concentrations individuals in the subgroup experience as a
result of the regulation.

Note that, because all individuals within a grid cell are assigned the same baseline (and control
scenario) pollutant concentration, the mean baseline concentration for a subgroup is referred to
as a population-weighted average, because it is calculated as a population-weighted average of
grid-cell-specific pollutant concentrations. If xi denotes the baseline pollutant concentration in
the ith grid cell, nji denotes the number of individuals in the jth subgroup in the ith grid cell, and
nj denotes the total number of individuals in the jth subgroup, then the mean baseline pollutant
concentration for the jth subgroup is












i
iji

j
j xn

n
x *

1
. (3)

The mean reduction in pollutant concentration for a subgroup is similarly calculated as a
population-weighted average of grid cell-specific reductions in pollutant concentrations as a
result of implementation of a rule or regulation.

2.2.2 Estimating subgroup-specific reductions in incidence rates of health effects

As noted in Section 2.2.1 above, BenMAP enables us to identify each individual in the United
States by racial and/or ethnic subgroup and to estimate each individual’s baseline pollutant level
as well as the reduction in pollutant level that will result from implementation of a rule or
regulation. This allows us to effectively carry out a benefit analysis separately for each subgroup
– i.e., to estimate subgroup-specific changes in health effect incidence, using the same basic
approach used in the typical air pollution benefit analysis.

To estimate the health effect incidence change associated with a specified change in level of a
pollutant in a grid cell within BenMAP, we need, in addition to the estimated baseline and
control scenario levels of the pollutant:

 Concentration-response (C-R) function(s), which provide an estimate of the relationship
between the health endpoint of interest and the concentration of the pollutant; and

 Baseline health effects incidence. The baseline incidence of the health effect in a
location is the incidence corresponding to baseline pollutant levels in that location. The
baseline incidence is typically calculated as the product of the incidence rate (e.g.,
number of cases per 10,000 population) and the affected population (divided by 10,000, if
the rate is per 10,000 population).

These inputs are combined to estimate the health effect incidence reduction associated with a
specified reduction in pollutant levels. Although some epidemiological studies have estimated
linear or logistic C-R functions, by far the most common form is the exponential (or log-linear)
form:
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xBey  , (4)

where x is the ambient pollutant level, y is the incidence of the health endpoint of interest at
pollutant level x, β is the coefficient of ambient pollutant concentration (describing the extent of
change in y with a unit change in x), and parameter B is the incidence when there is no ambient
pollutant (i.e., x=0). The relationship between a specified ambient pollutant level, x0, for
example, and the incidence of a given health endpoint associated with that level (denoted as y0)
is then

0
0

xBey  . (5)

Because the log-linear form of C-R function (equation (4)) is by far the most common form, we
use this form to illustrate the “health impact function” used to calculate changes in health effect
incidence. If we let x0 denote the baseline (upper) level of the pollutant, x1 denote the control
scenario (lower) level of the pollutant, y0 denote the baseline incidence and y1 denote the
incidence after the rule is implemented, we can derive the following relationship between the
change in x, Δx= (x0- x1), and the corresponding change in y, Δy, from equation (4)10:

 y y y y e x    ( ) [ ] .0 1 0 1  (6)

Ideally we would use subgroup-specific C-R functions and baseline incidence rates to calculate
Δy for each subgroup. In practice, however, subgroup-specific C-R functions are rare, and
distributional analyses must typically assume that the C-R relationship is the same across
subgroups.

For some health endpoints, subgroup-specific baseline incidence rates are available, and if they
are available they should be used. Indeed, because there appears to be substantial variation in
baseline incidence rates between subgroups, we recommend calculating health impacts only
when subgroup-specific baseline incidence rates are available. A detailed discussion of the
subgroup-specific baseline incidence rates available for a distributional analysis of the HDD rule,
their sources, and the methods we used to estimate rates for specific subgroups is given in
Appendix A.

Changes in incidence of each health effect for each subgroup were calculated for each grid cell in
BenMAP, using equation (6) with subgroup-specific baseline incidence rates where possible. As
noted above, the change in pollutant level, Δx, is assumed to be the same for all individuals in the
grid cell. The baseline incidence of the health effect for a subgroup was calculated by
multiplying the baseline incidence rate (subgroup-specific, if available) by the population for the
subgroup in the grid cell. The total change in incidence of a health effect for a subgroup was

10 If Δx < 0 – i.e., if Δx = (x1- x0) – then the relationship between Δx and Δy can be shown to be 
]1[)( 001  xeyyyy  .  If Δx < 0, Δy will similarly be negative. However, the magnitude of Δy will be the 

same whether Δx > 0 or Δx < 0 – i.e., the absolute value of Δy does not depend on which equation is used. 
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then calculated by summing the grid cell-specific changes for that subgroup. To compare
subgroups, we calculated the corresponding changes in incidence rates – e.g., the changes in
incidence per million population.

2.2.3 Characterizing inequality using inequality measures and Lorenz curves

If we observe a variety of exposures occurring with a non-zero frequency, then the distribution is
clearly unequal – some individuals are exposed to higher levels of pollution than others.
However, inequality is a matter of degree and it is desirable to have an index that would
summarize the distribution into one number by quantifying the degree of inequality. There are a
number of such inequality measures with a variety of desirable properties.11

One property that is particularly desirable in an inequality measure to be used in a distributional
analysis comparing subgroups is the property of decomposability. An inequality measure is
subgroup-decomposable (or additively separable) if the total inequality can be divided into
constituent parts of the distribution. In other words, one can use the measure to assess within-
and between- group inequalities (This is analogous to the comparison of within-group variability
to between-group variability in an analysis of variance to determine if the group-defining
variable significantly affects the dependent variable.). Levy(2006) proposes the Atkinson index
as the most appropriate indicator for health risk analysis in part because it has this property.

The Atkinson index is derived from a Social Welfare Function that is of a Constant Elasticity of
Substitution (CES) form (see definition in Appendix A.3). It depends on an inequality aversion
parameter, ε>0. When ε<1, more weight is placed on the differences (e.g., differences in
baseline PM2.5 concentrations between individuals) in the top of the distribution. When ε>1, the
index is more sensitive to differences in the bottom of the distribution. This index has a
maximum of 1, which indicates extreme inequality, and a minimum of 0, which indicates
absolute equality.

A second inequality measure that has the property of decomposability is the Generalized Entropy
indicator, derived from Information Theory (see definition in Appendix A.3). The Generalized
Entropy measure depends on a parameter, . For  > 0, the measure is more sensitive to
differences in the top of the distribution, while for  < 0 it is more sensitive to differences in the
bottom of the distribution. Unlike the Atkinson measure, the Generalized Entropy indicator does
not have a maximum of 1.

Finally, the Lorenz curve is a useful graphical representation of the gap between the distribution
in question and a perfectly egalitarian distribution. The Lorenz curve maps cumulative
population share to cumulative exposure share – i.e. a point on the Lorenz curve tells us that x%
of population is exposed to y% of total pollution.

11 Appendix A.3 presents the definitions and properties of various inequality measures. Also see Cowell (2000) for a
summary of inequality measures and their properties.
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Figure 2 shows the Lorenz curve under different situations. When the distribution is perfectly
egalitarian, the Lorenz curve is the 45o line. When the distribution is perfectly unequal (a single
individual is exposed to the entire amount of pollution), the Lorenz curve follows the horizontal
and then the vertical axis. Other than these two extreme cases, the Lorenz curve would be
something like the dotted curve. Area A represents the gap between a completely egalitarian
distribution and the distribution being analyzed. The greater the area of A, the greater is the
inequality.

Figure 2. The Lorenz Curve

2.3 Assessment of Uncertainty

There are a number of sources of uncertainty, including exposure estimates, population data,
incidence rates, and health impact functions. We did not characterize uncertainty in the exposure
estimates and simply recognize that there is uncertainty. For some inputs to our analysis, such as
air quality modeling, population data, and incidence rates, it is not currently possible to quantify
the associated uncertainty. In the case of C-R relationships, we can quantify the uncertainty;
however, since our C-R relationships do not vary by population subgroup, it is not immediately
obvious that quantifying the uncertainty is informative for this analysis.
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3 A Case Study: EPA’s Heavy Duty Diesel Rule in 2030

To illustrate the methods described in Section 2, we applied them to EPA’s HDD Rule, which is
a part of EPA’s comprehensive national control program to regulate the heavy-duty vehicle and
its fuel as a single system program.

There are two basic parts to the final rule: (1) new exhaust emission standards for heavy duty
highway engines and vehicles, and (2) new quality standards for highway diesel fuel (U.S. EPA,
2000). The new emission standards which are applied to heavy-duty highway engines and
vehicles took effect in 2007. These emission standards are based on the use of high-efficiency
catalytic exhaust emission control devices which are damaged by sulfur. Therefore the emission
standards would not be feasible without the new quality standards for diesel fuel, which require a
97% reduction in the sulfur content of diesel fuel. This nationwide program will result in
emission levels of particulate matter (PM) and oxides of nitrogen that are 90% and 95%,
respectively, below current standards levels (Abt Associates Inc., 2000).

First we define our subgroups. Consistent with the racial categories in the census data, we
considered four racial groups – Asian-American, African-American, Native American, and
Caucasian (White) – as well as two ethnic groups (Hispanic and non-Hispanic). Table 1 gives the
U.S. population by race and ethnicity from Census 2000. Asian Hispanic12 has the smallest
population and White non-Hispanic has the largest.

Table 1. U.S. Population (in millions) by Race and Ethnicity.

Race Ethnicity Population
Asian-American Hispanic 0.2

Non-Hispanic 10.4
African-American Hispanic 1.4

Non-Hispanic 34.3
Native American Hispanic 0.6

Non-Hispanic 2.1
White Hispanic 34.8

Non-Hispanic 195.6
Source: U.S. Census Bureau (2002, Table 1)

For each of the racial subgroups, as well as for some combinations of racial, ethnic, and age
groups, we examined:

12 Asian Hispanic is a term for Hispanic Americans having Asian blood and for those Hispanics who consider
themselves or were officially classified by the United States Census Bureau, Office of Management and Budget, and
other U.S. government agencies as Asian-Americans. (http://en.wikipedia.org/wiki/Asian_Hispanic)
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 the ambient PM2.5 concentrations to which they will be exposed in 2030 in the baseline
(in the absence of the rule)13;

 the reduction in ambient PM2.5 concentrations they will experience in 2030 as a result of
the rule; and the corresponding reduction in each of several health effects they are
expected to experience as a result of the rule.

The specific inputs to the analysis (air quality data, concentration-response functions, population
data, and baseline incidence rates) are described in detail in Appendix A.2. Section 3.1 presents
baseline population-weighted average PM2.5 concentration and population distribution, projected
to 2030, separately for each subgroup. Section 3.2 presents the projected population-weighted
average reduction in ambient PM2.5 concentrations as well as the corresponding reduction in
health effects predicted to result from the HDD rule in 2030 for each subgroup.

3.1 Projected Population Distributions and Baseline PM2.5 Concentrations

Figure 3 shows subgroup-specific maps of population distribution projected to 203014. Figure 4
show a map of projected baseline ambient PM2.5 concentrations. A comparison of the subgroup-
specific projected population maps with the map of projected baseline ambient PM2.5

concentrations gives a “broad brush” picture of which groups are projected to live in areas of
high and low PM2.5 concentrations.

PM2.5 can be considered as a regional pollutant compared with some other pollutants (e.g. CO).
Figure 4 shows that the high PM2.5 concentrations are mostly in the Eastern half of the United
States and, to a lesser extent, in southern California – areas in which most African-Americans
and Asian-Americans are projected to live. In contrast, Native Americans are projected to be
concentrated largely in the Southwest and to some extent in California. Because the Southwest
is projected to have relatively low PM2.5 concentrations, Native Americans have the lowest
baseline PM2.5 concentrations of any of the racial subgroups.

Figure 5 presents the forecasted reductions in ambient PM2.5 concentrations across the U.S. For
regions that have high baseline PM2.5 concentrations, the forecasted reductions are also large, as
expected.

13 The proposed method can apply to other pollutants as well. The original analysis examined O3 and PM2.5. In this
final report, we focus on PM2.5 for simplicity.

14 For details about how BenMAP forecasts the population to 2030, see Appendix A.2.2.
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Figure 3. Forecasted 2030 Populations by Race and Ethnicity

Asian-American African-American

Native-American Caucasian

Hispanic Non-Hispanic
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Figure 4. Forecasted 2030 Baseline Ambient PM2.5 Concentrations

Figure 5. Forecasted 2030 Reduction in Ambient PM2.5 Concentrations (Baseline Minus Control)

The baseline PM2.5 concentrations that subgroups are predicted to experience in 2030 can also be
characterized quantitatively by calculating population-weighted averages of grid cell-specific
concentrations, as shown in equation (3) above. Racial and ethnic group-specific population-
weighted average baseline PM2.5 concentrations in 2030 are shown in Table 2.
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Table 2. Predicted Racial and Ethnic Group-Specific Population-Weighted Average Baseline PM2.5

Concentrations in 2030

Racial/Ethnic Subgroup
Mean Baseline PM2.5 Level in 2030

(ug/m3)
Asian-American 16.7
African-American 18.1
Native American 10.2
White Hispanic 13.4
White non-Hispanic 14.1
Total Population 14.7

As can be seen from Table 2, on average, African-Americans and Asian-Americans are predicted
to experience the highest baseline PM2.5 concentrations (i.e., in the absence of the HDD rule),
and Native Americans are predicted to experience the lowest. As noted above, this is largely a
result of the relative proportions of subgroups that are projected to live in those areas of the
United States where particulate matter air pollution is highest —in particular, Asian-Americans
and African-Americans are projected to be disproportionately located in those portions of the
country with the highest projected baseline PM2.5 concentrations.

As noted in Section 2.3, our results are associated with various uncertainties. However there is
no uncertainty due to sampling error surrounding the estimates in Table 2, because these means
are not based on samples but on a complete census of the population. Thus the usual tests to
determine whether estimated means are statistically significantly different from each other do not
apply.

3.2 Population-Weighted Average Reductions in PM2.5 and Corresponding
Reductions in Health Effects Incidence

We present the reduction in health effects incidence rates alongside the reduction in PM2.5

concentrations each subgroup is predicted to experience as a result of the HDD rule, separately
for each of several health effects for which there is epidemiological evidence of an association
with PM2.5. This juxtaposition makes it easier to see the correspondence or lack of
correspondence between the two. For each subgroup, we show (1) the absolute reduction in
PM2.5 concentration the subgroup is predicted to experience and the absolute reduction in the
health effect (cases per million population), as well as (2) the relative reduction in PM2.5

concentration and the relative reduction in the health effect per million population – relative to
the total population. The relative reduction allows us to see at a glance how one subgroup is
expected to fare relative to others, both in terms of the reduction in PM2.5 concentration they will
experience and in terms of the reduction in health effects expected to result.

We calculate the relative reduction by dividing the absolute reduction for each racial-age group
by the absolute reduction for the total population for that age group. For example, if Asian-
American adults (ages 18-64) have an absolute reduction in mean PM2.5 concentration of 0.69
ug/m3 as a result of HDD rule and the absolute reduction for all adults (ages 18-64) is 0.59
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ug/m3, then the relative reduction is approximately 1.2 (≈ 0.69 / 0.59). This means that Asian-
American adults experience 20 percent more PM2.5 reduction compared with the total population,
so they benefit more from the HDD rule than the population as a whole. In contrast, while the
absolute reduction in mean PM2.5 concentration is positive (0.39 ug/m3) for Native-American
adults, the relative reduction is 0.7 (<1). This indicates that, although Native-American adults do
benefit from the HDD rule, they benefit less than the population as a whole.

Tables 2, 3, 4, and 5 present results for non-fatal acute myocardial infarction, emergency room
(ER) visits for asthma, cause-specific hospital admissions, and all-cause mortality, respectively.15

Each table includes:

 Subgroup information: While the subgroups are defined by age, race and ethnicity for
asthma ER visits, they are defined only by age and race for other health endpoints. This is
because incidence data by ethnicity are not available for the other health endpoints.

 Absolute and relative reduction in PM2.5 concentrations as a result of the HDD rule, as
explained at the beginning of Section 3.2.

 Baseline Incidence: The subgroup-specific baseline incidence rates for the health effect(s)
contribute to the calculation of reduction in incidence associated with reduction in PM2.5

concentrations, as explained in Section 3.2.2 below.
 Absolute and relative reduction in incidence for each health effect as a result of the HDD

rule (see discussion in Section 3.2.2 below).

Table 3. Absolute and Relative Reduction in Mean PM2.5 Concentrations and Incidence of Non-
Fatal Acute Myocardial Infarction (per Million Population)

Age / Race
Baseline

Incidence per
100,000 Pop.

Absolute
Reduction in
PM2.5 Level

(ug/m3)

Relative
Reduction in
PM2.5 Level

Absolute
Reduction in
Incidence per
Million Pop.

Relative
Reduction in
Incidence per
Million Pop.

Adults (18-64)
Asian-American 107.3 0.69 1.2 12.9 0.5
African-American 166.6 0.74 1.2 28.7 1.1
Native American 91.8 0.39 0.7 7.2 0.3
White 202.5 0.56 0.9 27.5 1.0
Total Population 188.9 0.59 -- 26.4 --
Elderly (65+)
Asian-American 858.3 0.67 1.2 114.6 0.7
African-American 1,134.1 0.74 1.3 198.5 1.1
Native American 2,176.7 0.39 0.7 135.9 0.8
White 1,358.3 0.54 1.0 177.9 1.0
Total Population 1309.4 0.57 -- 175.4 --

15 The health endpoints we presented here do not represent the complete list of endpoints attributable to the HDD
rule. They are chosen to fully represent the range of ages, races, and ethnicities of interest in the analysis.
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Table 4. Absolute and Relative Reduction in Mean PM2.5 Concentrations and Incidence of Asthma-
Related ER Visits Among Children (0-17) (per Million Population)

Race Ethnicity

Baseline
Incidence /

100,000
Pop.

Absolute
Reduction in
PM2.5 Level

(ug/m3)

Relative
Reduction in
PM2.5 Level

Absolute
Reduction in
Incidence /

Million Pop.

Relative
Reduction in
Incidence /

Million Pop.
Asian-American Hispanic 244.4 0.58 1.0 15.3 0.2

Non-Hispanic 170.7 0.71 1.2 12.0 0.1
African-American Hispanic 1,548.3 0.65 1.1 180.9 1.9

Non-Hispanic 2,099.2 0.74 1.2 253.7 2.7
Native American Hispanic 265.4 0.51 0.8 15.0 0.2

Non-Hispanic 258.6 0.30 0.5 6.3 0.1
White Hispanic 614.1 0.54 0.9 59.9 0.6

Non-Hispanic 768.1 0.58 1.0 76.1 0.8
Total Population -- 889.9 0.60 -- 94.5 --

Table 5. Absolute and Relative Reduction in Mean PM2.5 Concentrations and Hospitalizations (per
Million Population)

Effect / Race
Baseline

Incidence per
100,000 Pop.

Absolute
Reduction in
PM2.5 Level

(ug/m3)

Relative
Reduction in
PM2.5 Level

(ug/m3)

Absolute
Reduction in
Incidence per
Million Pop.

Relative
Reduction in
Incidence per
Million Pop.

All Cardiovascular (less Myocardial Infarctions): Adults (18-64)
Asian-American 608.1 0.69 1.2 5.2 0.7
African-American 1,487.0 0.74 1.2 15.2 1.9
Native American 980.6 0.39 0.7 5.5 0.7
White 841.9 0.56 0.9 6.8 0.9
Total Population 918.6 0.59 -- 7.9 --
All Cardiovascular (less Myocardial Infarctions): Elderly (65+)
Asian-American 5,459.7 0.67 1.2 49.2 0.8
African-American 8,393.8 0.74 1.3 97.1 1.5
Native American 12,718.9 0.39 0.7 59.5 0.9
White 6,944.8 0.54 1.0 60.9 1.0
Total Population 7037.2 0.57 -- 63.7 --
Congestive Heart Failure: Elderly (65+)
Asian-American 1,651.2 0.67 1.2 27.6 0.7
African-American 2,746.2 0.74 1.3 62.6 1.6
Native American 2,735.0 0.39 0.7 26.4 0.7
White 2,105.1 0.54 1.0 36.3 0.9
Total Population 2143.9 0.57 -- 38.2 --
Dysrhythmia: Elderly (65+)
Asian-American 867.3 0.67 1.2 5.6 0.6
African-American 1,044.4 0.74 1.3 9.9 1.0
Native American 2,409.9 0.39 0.7 7.4 0.8
White 1,413.3 0.54 1.0 9.9 1.0
Total Population 1348.4 0.57 -- 9.6 --
Ischemic Heart Disease (less Myocardial Infarctions): Elderly (65+)
Asian-American 1,967.7 0.67 1.2 16.9 0.9
African-American 1,980.5 0.74 1.3 20.5 1.1
Native American 5,553.9 0.39 0.7 26.4 1.4
White 2,269.9 0.54 1.0 18.1 1.0
Total Population 2247.5 0.57 -- 18.3 --
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Effect / Race
Baseline

Incidence per
100,000 Pop.

Absolute
Reduction in
PM2.5 Level

(ug/m3)

Relative
Reduction in
PM2.5 Level

(ug/m3)

Absolute
Reduction in
Incidence per
Million Pop.

Relative
Reduction in
Incidence per
Million Pop.

Asthma: Children (0-17)
Asian-American 189.8 0.70 1.2 4.1 0.7
African-American 719.3 0.73 1.2 18.6 3.1
Native American 294.2 0.37 0.6 4.2 0.7
White 196.0 0.57 0.9 3.6 0.6
Total Population 280.0 0.60 -- 6.1 --
Asthma: Adults (18-64)
Asian-American 52.6 0.69 1.2 1.0 0.4
African-American 297.0 0.74 1.2 7.5 2.9
Native American 49.8 0.39 0.7 0.7 0.3
White 94.9 0.56 0.9 1.9 0.7
Total Population 120.3 0.59 -- 2.6 --
Chronic Lung Disease (Study: Moolgavkar): Elderly (65+)
Asian-American 992.2 0.67 1.2 11.7 0.7
African-American 1,956.7 0.74 1.3 26.3 1.6
Native American 1,148.9 0.39 0.7 8.4 0.5
White 1,540.5 0.54 1.0 15.8 1.0
Total Population 1542.4 0.57 -- 16.5 --
Chronic Lung Disease (Study: Ito): Elderly (65+)
Asian-American 992.2 0.67 1.2 7.4 0.7
African-American 1,956.7 0.74 1.3 16.7 1.6
Native American 1,148.9 0.39 0.7 5.3 0.5
White 1,540.5 0.54 1.0 10.1 1.0
Total Population 1542.4 0.57 -- 10.5 --
Chronic Lung Disease (less Asthma): Adults (18-64)
Asian-American 30.7 0.69 1.2 0.3 0.2
African-American 162.5 0.74 1.2 2.6 1.4
Native American 31.1 0.39 0.7 0.2 0.1
White 156.2 0.56 0.9 2.0 1.0
Total Population 146.2 0.59 -- 1.9 --
Pneumonia: Elderly (65+)
Asian-American 1,857.9 0.67 1.2 43.2 0.8
African-American 2,026.5 0.74 1.3 59.6 1.1
Native American 4,974.3 0.39 0.7 58.1 1.1
White 2,375.1 0.54 1.0 51.7 1.0
Total Population 2327.1 0.57 -- 51.9 --
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Table 6. Absolute and Relative Reduction in Mean PM2.5 Concentrations and Incidence of All-
Cause Mortality (per Million Population)

Age / Race
Baseline

Incidence per
100,000 Pop.

Absolute
Reduction in
PM2.5 Level

(ug/m3)

Relative
Reduction in
PM2.5 Level

(ug/m3)

Absolute
Reduction in
Incidence per
Million Pop.

Relative
Reduction in
Incidence per
Million Pop.

Infants (Age 0)
Asian-American 290.7 0.71 1.2 13.6 0.7
African-American 954.3 0.74 1.2 46.9 2.3
Native American 416.6 0.38 0.6 9.0 0.4
White 400.5 0.57 0.9 15.3 0.8
Total Population 481.6 0.61 -- 20.2 --
Adults (30-64)
Asian-American 177.1 0.69 1.2 6.6 0.6
African-American 518.3 0.73 1.2 21.6 2.0
Native American 258.7 0.40 0.7 4.6 0.4
White 302.7 0.55 0.9 9.7 0.9
Total Population 322.5 0.58 -- 11.1 --
Elderly (65+)
Asian-American 2,041.1 0.67 1.2 77.6 0.6
African-American 3,978.3 0.74 1.3 170.1 1.4
Native American 2,534.4 0.39 0.7 52.8 0.4
White 3,794.5 0.54 1.0 119.6 1.0
Total Population 3686.3 0.57 -- 121.3 --

3.2.1 Subgroup-specific reductions in PM2.5 concentrations

On average, Asian-Americans and African-Americans are predicted to experience relatively
larger reductions in PM2.5 concentrations as a result of the HDD rule. Asian-Americans are
predicted to experience about 20 percent greater reductions, on average, than the total population
(i.e., a relative reduction of 1.2), while African-Americans are predicted to experience from 20
percent to 30 percent greater reductions (i.e., relative reductions of 1.2 or 1.3), on average,
depending on the age group considered. Native Americans, on the other hand, are predicted to
experience reductions that are relatively smaller than the general population, on average – about
70 percent of the reduction for the total population. Finally, whites are predicted to experience
reductions in air quality that are basically the same as those of the total population (relative
reduction of 0.9 for ages 18 – 64, and 1.0 for the young and the elderly).

All of these relative reductions largely reflect the confluence of population distributions and
baseline air quality. Native Americans are predicted to see relatively small reductions in the
PM2.5 concentrations to which they will be exposed, on average, because they live largely in
areas in which the baseline PM2.5 concentrations were low to begin with. In contrast, Asian-
Americans and African-Americans are predicted to experience relatively larger reductions in
PM2.5 concentrations as a result of the HDD rule, on average, because they tend to live in areas
with higher baseline concentrations (e.g., a relatively high proportion of African-Americans live
in the Eastern United States, with its higher concentrations of PM2.5).
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3.2.2 Subgroup-specific health effects

The relative reductions in air quality predicted to be experienced by the different racial and
ethnic subgroups as a consequence of where they live, however, do not necessarily translate into
the same relative reductions in health effects. This is because the reductions in health effects
depend, in addition, on the baseline incidence rates of the health effects, and these differ
substantially across the subgroups. For example, the baseline rate of hospital admissions for
asthma among children (ages 0 – 17) is 190 per 100,000 Asian-American children, whereas it’s
719 per 100,000 African-American children. Both groups are predicted to experience about 20
percent greater reductions in PM2.5 concentrations, on average, relative to the total population.
However, Asian-American children are predicted to experience a reduction in asthma-related
hospital admissions that is only 70 percent of the reduction that will be experienced by children
in the total population, whereas African-American children are predicted to experience a
reduction that is over 300 percent of the reduction for children in the general population. This
reflects the underlying greater vulnerability of African-American children to hospitalization for
asthma, reflected in their much higher baseline incidence rate, relative to the general population
(or, for that matter, to any other subgroup).

The relative reductions in PM-related health effects incidence for the different racial and ethnic
subgroups predicted to result from the HDD rule in 2030 thus reflect both the relative reductions
in PM2.5 concentrations experienced by the different subgroups and their underlying baseline
incidence rates. As shown in the example above, the latter can differ substantially among the
subgroups, often reflecting underlying socioeconomic and/or genetic differences. Thus even if
two subgroups are predicted to experience the same reduction in PM2.5 concentrations as a result
of the HDD rule, the reduction in health effects incidence rates that will result can be very
different in the two groups, reflecting differences in their baseline incidence rates which, in turn,
reflect differences in their underlying susceptibilities to these environmental insults.

Even within the same broad category of health effect – hospital admissions – there can be
substantial differences in incidence reduction across specific types of hospital admissions, as can
be seen in Table 5. For example, African-Americans are predicted to experience reductions in
PM2.5 concentrations that are 20 or 30 percent greater than those that will be experienced by the
total population. For some types of hospital admissions (e.g., for ischemic heart disease or
dysrhythmia among the elderly) this is predicted to result in decreases in incidence among
African-Americans that are not very different from those for the total population; for other types
of hospital admissions (e.g., for asthma among children or adults), the predicted reductions in
incidence among African-Americans are much greater (about 3 times as much as for the total
population).

3.3 Other Characterizations of Differences Among Subgroups

In sections 3.1 and 3.2, we compared mean baseline PM2.5 concentrations, and mean reductions
in PM2.5 concentrations and health effect incidence, across racial and ethnic subgroups, where
these subgroup-specific population means were calculated as the population-weighted average of
grid cell-specific values, as shown in equation (3) above. The population-weighted average is a
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good metric for highlighting broad patterns – e.g., that one racial group tends to experience
higher baseline levels of a pollutant and/or greater reduction in pollutant concentrations than
others, or that the corresponding reductions in health effects incidence do not necessarily follow
the same patterns as the reductions in pollutant concentration exposures.

3.3.1 Comparing other characteristics of subgroup-specific distributions

The mean is just one characteristic of an entire distribution of baseline PM2.5 concentrations a
subgroup is predicted to experience – i.e., not everyone in a subgroup experiences the same
baseline concentration. Similarly, each subgroup can be characterized by an entire distribution
of reductions in PM2.5 concentrations as a result of the HDD rule. Another way to compare
subgroups, then, is to compare these distributions. This can be done either graphically or in a
tabular presentation of key percentiles of the distributions. We illustrate a graphical approach
using a comparison of the subgroup-specific cumulative distributions of baseline PM2.5

concentrations, shown in Figure 6, and subgroup-specific cumulative distributions of reductions
in PM2.5 concentrations as a result of the HDD rule, shown in Figure 7.16 We illustrate the
tabular approach to comparing distributions using the same comparisons of the subgroup-specific
distributions of baseline PM2.5 concentrations and reductions in PM2.5 concentrations as a result
of the HDD rule, in Tables 6 and 7, respectively.

In Figure 6 and Figure 7, any point (x, y) along the cumulative distribution shows that 100y
percent of each subgroup is exposed to more than x PM2.5 concentration. Figure 6 shows that
Native Americans are exposed to relatively low baseline PM2.5 levels, whereas greater
percentages of African-Americans, Asian-Americans and Whites are exposed to relatively high
baseline PM2.5 levels.

Figure 7 shows the distribution of reductions in PM2.5 levels for each subgroup. The pattern of
the curves is similar to that in Figure 6. Native-Americans are predicted to experience smaller
reductions in PM2.5 levels than other groups. Figure 6 and Figure 7 jointly indicate that
subgroups exposed to higher levels of pollution in the baseline will receive larger benefits as a
result of the HDD rule.

16 Note that Figure 6 and Figure 7 both show the proportions of each subgroup experiencing greater than or equal
to some level – i.e., 1 – Fq in equation (2).
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Figure 6. Racial and Ethnic Group-Specific Distributions of Baseline PM2.5 Concentrations
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Figure 7. Racial and Ethnic Group-Specific Distributions of Reduction in PM2.5 Concentrations
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Table 7. 2030 Projected Baseline Annual Average PM2.5 Concentrations (ug/m3) by Race and
Ethnicity

Racial/Ethnic
Subgroup Mean

Std.
Deviation

5th

Percentile
25th

Percentile
50th

Percentile
75th

Percentile
95th

Percentile
Asian-American 16.705 9.133 5.637 9.525 15.029 21.308 39.587
African-American 18.130 7.5023 7.424 13.219 16.991 21.469 34.467
Native American 10.219 6.972 2.466 4.426 9.171 13.739 22.612
White Hispanic 13.385 8.210 3.382 6.779 12.401 17.278 29.319
White non-Hispanic 14.068 6.447 4.162 9.610 13.892 17.224 25.351
Total Population 14.654 7.388 4.050 9.517 14.045 18.019 28.441

Table 8. 2030 Projected Reductions in Annual Average PM2.5 Concentrations (ug/m3) by Race and
Ethnicity

Racial/Ethnic
Subgroup Mean

Std.
Deviation

5th

Percentile
25th

Percentile
50th

Percentile
75th

Percentile
95th

Percentile
Asian-American 0.766 0.406 0.252 0.445 0.693 0.932 1.480
African-American 0.792 0.419 0.265 0.465 0.706 1.008 1.539
Native American 0.438 0.354 0.042 0.125 0.373 0.622 1.048
White Hispanic 0.616 0.374 0.105 0.341 0.585 0.828 1.347
White non-Hispanic 0.606 0.365 0.128 0.358 0.549 0.777 1.347
Total Population 0.644 0.385 0.134 0.383 0.585 0.828 1.355

We can see from Tables 6 and 7 that there is substantial variability in both baseline PM2.5

concentrations and reductions in PM2.5 concentrations as a result of the HDD rule, even within
subgroups. Among African-Americans, for example, while the mean baseline annual average
PM2.5 concentration is 18.13 ug/m3, five percent of this subgroup is predicted to experience
baseline concentrations less than half that concentration (7.42 ug/m3), while another five percent
is predicted to experience baseline concentrations almost 5 times that concentration (34.47
ug/m3). The general patterns seen in the subgroup-specific means, however, is also seen in the
distributions as a whole. While African-Americans and Asian-Americans have the highest mean
baseline PM2.5 concentrations, they also have the highest 75th and 95th percentile concentrations.
So, for example, 25 percent of African-Americans will experience PM2.5 concentrations in excess
of 21.47 ug/m3. This is higher than the 25th percentile concentration for any other subgroup.
The 25th percentile concentration for Native Americans is, like their mean, the lowest among the
subgroups.

In addition, the subgroup-specific reductions in PM2.5 concentrations as a result of the HDD rule
tend to follow a pattern that is the reverse of the pattern seen in the baseline concentrations -- i.e.,
the subgroups that experience the worst baseline conditions tend to enjoy the greatest reductions
in PM2.5 concentrations – as was seen in the population-weighted means. For example, while
African-Americans are predicted to experience the highest baseline PM2.5 concentrations, they
are also predicted to experience the greatest reductions in PM2.5 concentrations as a result of the
HDD rule – both at the mean and in the upper tail of the distribution. Five percent of African-
Americans are predicted to experience reductions in PM2.5 concentrations of at least 1.54 ug/m3,
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whereas for the total population that 95th percentile point is only 1.36 ug/m3, and for Native
Americans it’s only 1.05 ug/m3.

3.3.2 Comparing subgroups using Lorenz curves and inequality measures

We introduced the Lorenz curve and inequality measures in Section 2.2.3. Lorenz curves,
presented in Figure 8, show graphically how subgroup-specific inequality in baseline PM2.5

concentrations varies across the subgroups. The subgroups whose curves are closest to the 45o

line have the least inequality; those whose curves are furthest from the 45o line have the most.
One can see at a glance that there is less inequality among African-Americans and white non-
Hispanics in contrast to more inequality among Asian-Americans, white Hispanics, and Native
Americans. Note that the Lorenz curve for the general population lies within the locus of group-
specific Lorenz curves, which implies that the between-group variability is not the major source
of overall variability.

Recall that inequality measures that are decomposable are particularly useful in distributional
analyses comparing subgroups, because they allow us to compare the inequality among members
within subgroups to the inequality between subgroups (analogous to the comparison of within-
group variability to between-group variability in an analysis of variance to determine if the
group-defining variable significantly affects the dependent variable).

As we noted in Section 2.2.3, the Generalized Entropy (GE) indicator depends on a parameter, .
For  > 0, the measure is more sensitive to differences in the higher end of the distribution, while
for  < 0 it is more sensitive to differences in the lower end of the distribution. In order to see
the results under different choices of , we calculated the GE indicator for baseline PM2.5

concentrations, for  = -1, 0, 1, and 2, first for the total population, and then for each
racial/ethnic subgroup. The results are given in Table 9.
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Figure 8. Subgroup-Specific Lorenz Curves for Baseline PM2.5 Concentrations in 2030
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Table 9. Generalized Entropy (GE) Indicator of Inequality in Baseline PM2.5 Concentrations in the
Total Population and in Racial/Ethnic Subgroups

Generalized Entropy Indicator (GE)Racial/Ethnic Subgroup
GE( =-1) GE( = 0) GE( = 1) GE( = 2)

Total Population 0.189 0.140 0.124 0.127
Asian-American 0.196 0.155 0.143 0.149
African-American 0.109 0.089 0.083 0.086
Native American 0.309 0.233 0.212 0.233
White Hispanic 0.257 0.194 0.176 0.188
White non-Hispanic 0.163 0.120 0.105 0.105

Within-Group Inequality 0.183 0.134 0.118 0.121
Between-Group Inequality 0.006 0.006 0.006 0.006
Share of Total Inequality
Attributable to Between-Group
Inequality 3.1% 4.3% 4.9% 5.0%

We similarly calculated the Atkinson index for baseline PM2.5 concentrations for the total
population and for each of the racial and ethnic subgroups. The Atkinson index depends on a
parameter, ε>0. When ε<1, more weight is placed on the differences between individuals in the
higher end of the distribution; when ε>1, the index is more sensitive to differences in the lower
end of the distribution. We calculated the Atkinson index using values of ε = 0.5, 1, and 2. The
results are given in Table 10.
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Table 10. Atkinson Index of Inequality in Baseline PM2.5 Concentrations in Total Population and in
Racial/Ethnic Subgroups

Atkinson IndexRacial/Ethnic Subgroup
 = 0.5  = 1  = 2

Total Population 0.064 0.131 0.274
Asian-American 0.072 0.144 0.281
African-American 0.042 0.085 0.179
Native American 0.106 0.207 0.382
White Hispanic 0.088 0.176 0.340
White non-Hispanic 0.054 0.113 0.246

Within-Group Inequality 0.060 0.123 0.255
Between-Group Inequality 0.004 0.009 0.026
Share of Total Inequality
Attributable to Between-Group
Inequality 5.67% 6.69% 9.30%

Holding the parameter ( or ε) fixed, larger indicators indicate more inequality. Table 9 and
Table 10 show that the results are consistent no matter which index we use. For all choices of 
or ε, we see that Native Americans have more inequality than any other subgroup and African-
Americans have the least inequality. That is, Native Americans have a wider spread of
exposures to PM2.5 and African-Americans are more equally exposed to PM2.5 compared with
other subgroups.

These inequality measures are particularly useful for showing at a glance the extent to which the
total inequality in the total population is due to inequality among subgroups. In the case of
baseline PM2.5 concentrations projected to 2030, both inequality measures strongly indicate that
only a small share of the total inequality among individuals in the total population is due to
inequality among subgroups. Using the Generalized Entropy Indicator with  = 2, for example,
slightly less than 5 percent of the total inequality in baseline PM2.5 concentrations to which
individuals in the general population are predicted to be exposed in 2030 is due to inequality
among the racial/ethnic subgroups. There is far more inequality within subgroups than between
them. Although the percentages are slightly different, the Atkinson Index tells the same basic
story. Using ε = 1, for example, less than 7 percent of the total inequality in baseline PM2.5

concentrations is due to inequality among the racial/ethnic subgroups. The between-group
inequality is at least an order of magnitude smaller than the within-group inequality for any of
the racial/ethnic subgroups. Thus, the differences between subgroup-specific means that we see
in Tables 1 and 2 seem much less substantial when seen in this broader context – i.e., there are
differences between the subgroups, on average, but these differences are very small compared to
the within-subgroup differences.

The inequality in reduction in PM2.5 concentrations in 2030 as a result of the HDD Rule within
and between racial and ethnic subgroups, measured using the Generalized Entropy indicator and
the Atkinson Index is shown in Tables 11 and 12, respectively. The results show a similar
pattern to the baseline case. Within the subgroup of Native Amercians, there is greater variability
in reduction of levels of exposure as a result of the HDD rule. In contrast, African-Americans
experience more equal reductions compared with other subgroups.
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As with baseline PM2.5 concentrations, the inequality in reductions in PM2.5 concentrations is
substantially greater within subgroups than between subgroups. Although the percentages vary
with the inequality measure and the parameter value chosen, the basic picture is clear.

Table 11. Generalized Entropy (GE) Indicator of Inequality in Reduction in PM2.5 Concentrations
Due to the HDD Rule in the Total Population and in Racial/Ethnic Subgroups

Generalized Entropy IndicatorRacial/Ethnic Subgroup
GE( =-1) GE( = 0) GE( = 1) GE( = 2)

Total Population 0.335 0.203 0.172 0.179
African-American 0.192 0.145 0.133 0.140
Asian-American 0.200 0.147 0.134 0.140
Native American 0.846 0.421 0.318 0.328
White Hispanic 0.396 0.226 0.183 0.184
White non-Hispanic 0.325 0.201 0.172 0.181

Within-Group Inequality 0.329 0.197 0.165 0.172
Between-Group Inequality 0.006 0.006 0.007 0.007
Share of Total Inequality
Attributable to Between-Group
Inequality 1.83% 3.10% 3.77% 3.75%

Table 12. Atkinson Index of Inequality in Reduction in PM2.5 Concentrations Due to the HDD Rule
in the Total Population and in Racial/Ethnic Subgroups

Atkinson IndexRacial/Ethnic Subgroup
 = 0.5  = 1  = 2

Total Population 0.088 0.184 0.401
African-American 0.0670 0.135 0.278
Asian-American 0.068 0.137 0.286
Native American 0.167 0.344 0.629
White Hispanic 0.096 0.202 0.442
White non-Hispanic 0.088 0.182 0.394

Within-Group Inequality 0.085 0.175 0.375
Between-Group Inequality 0.004 0.010 0.042
Share of Total Inequality
Attributable to Between-Group
Inequality 4.45% 5.59% 10.00%

Similarly, indices for the incidence of different health effects could also be calculated using the
same method. Due to limited time and resources, however, we do not present those results here.

3.3.3 Comparisons by Region

For some rules, impacts are geographically clustered – i.e., reductions are predicted to occur as a
result of the rule only, or primarily, in some regions of the country. For such rules, some
(possibly substantial) proportion of the population will experience no reduction in the pollutant,
and correspondingly no reduction in incidence of any health effects, as a result of the rule. In
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such cases, a large proportion of zeros will substantially affect summary statistics such as
population-weighted means or population-weighted percentiles of distributions of reductions.
Regional analyses, which allow us to compare subgroups within specified “hot spot” regions,
may be more informative in such cases.

Regional clustering of impacts is not as pronounced for the HDD Rule as for some other rules
such as the PM NAAQS (U.S. EPA, 2006). There are, however, regional differences that may be
worth highlighting. We illustrate this in Table 13, which shows regional results for hospital
admissions for all cardiovascular illnesses (except myocardial infarctions) among adults, age 18
– 64.

Table 13. Absolute and Relative Reduction in PM2.5 Concentrations and Hospitalizations (per
Million Population) for All Cardiovascular Illnesses (Except Myocardial Infarctions) Among
Adults, Ages 18 – 64: Regional Results

Region / Race

Baseline
Incidence

per
100,000

Pop.

Absolute
Reduction
in PM2.5

Level
(ug/m3)

Relative
Reduction
in PM2.5

Level
(ug/m3)

Absolute
Reduction

in
Incidence

per Million
Pop.

Relative
Reduction

in
Incidence

per Million
Pop.

Population
(millions)

Percent of
Population
in Region

Region 1: The Northeast
Asian-American 351.2 0.93 1.2 4.5 0.4 3.9 24.1%
African-American 1429.2 0.94 1.2 18.7 1.6 5.1 16.4%
Native American 1369.9 0.77 1.0 14.2 1.2 0.2 7.6%
White 1130.3 0.76 0.9 11.8 1.0 26.7 16.1%
Total Population 1088.5 0.80
Region 2: The Midwest
Asian-American 636.6 0.64 1.1 5.8 0.8 2.2 13.8%
African-American 1501.5 0.70 1.2 14.7 2.0 5.5 17.7%
Native American 1148.8 0.39 0.7 6.5 0.9 0.4 15.6%
White 789.8 0.58 1.0 6.3 0.9 36.2 21.9%
Total Population 872.9 0.59
Region 3: The South
Asian-American 419.5 0.88 1.3 5.0 0.5 4.1 25.3%
African-American 1510.1 0.75 1.1 15.6 1.7 17.3 56.1%
Native American 885.6 0.57 0.9 7.0 0.7 0.7 28.2%
White 925.2 0.63 0.9 7.9 0.8 59.8 36.2%
Total Population 1023.2 0.67
Region 4: The West
Asian-American 896.1 0.43 1.3 5.5 1.7 6.0 36.8%
African-American 1426.2 0.39 1.2 7.7 2.4 3.0 9.9%
Native American 921.3 0.23 0.7 3.0 0.9 1.2 48.6%
White 588.0 0.32 1.0 2.6 0.8 42.5 25.7%
Total Population 678.7 0.34

We noted above that for some rules pollutant changes are clustered regionally. In such cases,
there may be differential impacts on different subgroups if some are located disproportionately in
pollutant “hot spots” or in “hot spots” of pollutant change. Table 13 suggests that, for the HDD
rule, this is the case to only a limited extent. The population-weighted average absolute
reduction in PM2.5 concentration ranges from 0.80 ug/m3 in the Northeast to 0.34 ug/m3 in the
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West. The relative reductions in PM2.5 concentration predicted to be experienced by the different
subgroups, however, do not change substantially from one region to another. For some
subgroups, however, baseline incidence rates vary across the regions, and that in turn affects
regional health impacts. Asian-Americans, for example, are predicted to experience a 20 percent
greater reduction in PM2.5 concentration, relative to the total population in the Northeast, and a
10 percent greater relative reduction in the Midwest. However, the baseline incidence rate for
cardiovascular hospital admissions in this subgroup is almost double in the Midwest what it is in
the Northeast. Because of this, a very minor difference in the relative reduction in PM2.5

concentration experienced by Asian-Americans in the Northeast versus the Midwest becomes a
doubling in relative reduction in health effect (from 0.4 in the Northeast to 0.8 in the Midwest).
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4 Discussion

We saw that, for a national air pollution rule, those subgroups that are disproportionately
exposed to higher baseline pollutant concentrations tend to enjoy greater reductions in pollutant
concentrations as a result of the rule. This is not surprising, since rules tend to target the areas of
worst pollution. Therefore national air pollution rules would be expected to have an equalizing
effect (although the differences within subgroups were much greater than those between
subgroups for both baseline PM2.5 concentrations and reductions in concentrations).

We also saw that the reduction in air pollutant concentrations did not necessarily translate into an
equivalent reduction in health effect incidence in the different subgroups – e.g., the subgroup that
experiences the largest reduction in pollutant concentration as a result of a rule does not
necessarily also experience the largest reduction in incidence of adverse health effects associated
with the pollutant. This is because another factor – the baseline incidence rate of the adverse
health effect – affects each subgroup’s population health response to a reduction in pollutant
concentration, and these baseline incidence rates vary substantially across racial and ethnic
subgroups.

Environmental justice or distributional analyses were originally developed to address a common
hypothesis that environmental disamenities locate disproportionately in poor or predominantly
minority communities in part because of the socio-demographic makeup of those communities.
While PM2.5 is generated to some extent by stationary sources (e.g., power plants), where
someone had to decide where to locate the source of pollution, PM2.5 can travel great distances
and it can form in so-called “secondary” reactions in the atmosphere, many miles from the
original sources of the precursor emissions. This is an important consideration, particularly in
interpreting the results of a national distributional analysis of air quality. If we see differences in
pollutant concentrations to which the members of one subgroup are exposed versus those in other
subgroups, it does not necessarily follow that these differences are the result of unfair intent. On
the other hand, a finding that minorities and/or poorer households are disproportionately exposed
to higher levels of air pollution might reflect underlying injustices to the extent that housing
patterns reflect unequal access to higher quality areas (Morello-Frosch and Jesdale, 2006). In
general, it is more difficult to discern the why of any observed differences among subgroups for
regional air pollutants than for local pollutants.

Therefore, in our distributional analysis of a national air quality regulation, we are not asking
why there are differences in the levels to which different groups are exposed, but only whether
there are differences. We believe that the individual-based method discussed and illustrated
above is best suited to answering this question, because it effectively considers all members of
each subgroup and tallies results within subgroups (as opposed to, e.g., comparing “minority
communities” which also contain whites, with “white communities” which also contain
minorities).

Similarly, we are not asking why different subgroups may benefit differentially from a rule or
regulation, but simply whether or not they do benefit differentially – in terms of the reductions in
air pollution they experience as a result of the rule and in terms of the health risk reductions they
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enjoy as a result of the reductions in air pollution. We believe that the individual-based method
discussed above is similarly best suited to answering these questions.

As we noted above, however, in the assignment of pollutant concentrations, or reductions in
pollutant concentrations as a result of the HDD rule, our analysis could only approximate an
individual-level analysis, because estimating truly individual-specific pollutant concentrations
was not feasible. Instead we assigned the same baseline (and control scenario) pollutant
concentration to all individuals within a grid cell, and as a result, any intra-grid cell differences
between subgroups were obscured. This is likely to be less of a problem, however, for regional
pollutants such as particulate matter and ozone than for more local pollutants, such as carbon
monoxide, whose concentrations tend to vary more within any given grid cell.

In the HDD analysis, the grid was relatively coarse – each grid cell is roughly 36 kilometers by
36 kilometers, and even in more recent national analyses, such as the recent Marine Engine Rule
(U.S. EPA, 2008), the resolution is still relatively coarse at roughly 12 kilometers by 12
kilometers. The more the grid cell size can be reduced in such analyses, the better will be the
approximation to a truly individual-level distributional analysis. Still, because of an individual’s
normal mobility during the course of the day, it isn’t clear how much reduction is actually
necessary to achieve reasonable estimates of individual-specific pollutant concentrations. It
would be instructive to progressively reduce the grid cell size in a distributional analysis and
observe how grid cell size affects the results of the analysis.

To assess whether pollution affects some subgroups disproportionately, some studies (e.g.,
Apelberg, et al., 2005; Morello-Frosch, et al., 2002) have applied regression techniques and
statistical tests to what appear to be complete censuses rather than random samples (e.g., all the
census tracts in a given state), and have reported “statistically significant” results. “Statistical
significance,” however, is a meaningful concept only when an analysis is based on a random
sample (rather than the entire population of interest). “Statistical significance” suggests that what
we observe in the sample indicates something real about the population, rather than being due to
random chance (i.e., to the particular sample we randomly drew from the population). If we are
observing the entire population (e.g., all the census tracts in a state), then we should not use
statistical tests, as “statistical significance” is meaningless.

Rather than “statistical significance,” the relevant question is whether observed differences
between populations (e.g., between minorities and non-minorities) are worthy of concern. At
what point should any observed differences be considered disproportionate? There is no easy
answer.

We can say that the differences we observe in our distributional analysis are likely to be real
differences – in particular, we know that they are not just due to sampling error, since our
distributional analysis uses a complete census of each subgroup rather than samples. However,
because we cannot measure actual individual-level pollutant concentrations and must instead
assign the same concentration to all individuals in a grid cell, our method may misstate the
degree of difference between subgroups, since it obscures any intra-grid cell heterogeneity. In
particular, our method will understate differences between subgroups if the differences we see
when we look across grid cells also exist within grid cells. For example, suppose that, looking
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across grid cells (but ignoring heterogeneity within grid cells), we observe that minorities tend to
be exposed to higher pollution levels than non-minorities. If this also holds true within grid
cells, ignoring these intra-grid cell differences will cause us to understate the overall difference
between minorities and non-minorities.

However, even if there were no bias in our results, there is a legitimate question as to what
magnitude of differences between subgroups constitutes “environmental injustice.” Since it is
highly improbable that all subgroups would have exactly the same baseline pollutant
concentrations or reductions in pollutant concentrations, there will necessarily be differences.
There is no objective degree of difference beyond which we definitively conclude that there is
“environmental injustice.”

One useful set of tools for considering this problem, as noted above, are inequality indices that
allow a comparison of within-group and between-group variability. In our HDD Rule case
study, for example, we found that there is far more inequality in pollutant concentrations among
individuals within subgroups than between them. It would be instructive to examine the extent
to which this result holds as we decrease the grid cell size in our distributional analysis. If (1)
there is little variability in ambient PM concentrations within grid cells and/or (2) the intra-grid
cell distributions for the different subgroups are similar, then the result should basically hold.
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Appendix A. Methodological Details of Distributional Analysis of
Benefits of the Heavy Duty Diesel Rule

This Appendix presents the methodology and a description of the inputs used for estimating air
quality and health risks for the Heavy Duty Diesel rule.

A.1. Overview of a Typical Benefit Analysis

The typical benefit analysis for a rule or regulation targeting a criteria air pollutant proceeds
through the following seven steps:

Step 1: Estimate baseline and control scenario emissions from industrial and other emission
sources.

Step 2: Input the baseline emissions to an air quality model (AQM) that incorporates
atmospheric chemistry and relevant weather and climate variables. The AQM
provides as output the ambient levels of the relevant air pollutant(s) in each grid cell
in a specified grid covering the United States. Different AQMs use different grid
sizes which depend to a large extent on the computational abilities of the computers
doing the modeling.

Step 3: Input the control scenario emissions to an AQM which provides as output the
ambient levels of the relevant air pollutant(s) in each grid cell in a specified grid
covering the United States.

Step 4: Input the grid cell-specific baseline and control scenario ambient air pollutant
concentrations output from the AQM to a benefits model such as BenMAP. The
benefits model may have its own grid (in which case, air pollutant concentrations in
the grid cells must be interpolated from the air pollutant concentrations in the grid
cells of the AQM, or from monitors, if monitor data are used instead). In the case
of BenMAP, the grid can be specified to conform to the grid of any AQM.

Step 5: Calculate the number of cases of each specified health effect avoided. Given the
change in air pollutant concentration in a grid cell, from baseline to control
scenario, the benefits model calculates the number of cases of each specified health
effect avoided (e.g., the number of cases of mortality avoided) as a result of that
change for each grid cell in its grid. The benefits model requires the following
inputs to calculate cases avoided within a grid cell:

a) The population within the grid cell;

b) The baseline incidence rate for the specified health effect;

c) The change in ambient air pollutant concentration (from baseline to control
scenario); and
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d) A health impact function giving the change in the number of cases of the
specified health effect corresponding to a given change in ambient air
pollutant concentration.

Step 6: Aggregate across grid cells to derive total number of cases avoided. After grid-cell-
specific numbers of cases avoided are calculated, the benefits model aggregates
across grid cells to derive a total number of cases avoided.

Step 7: Cases avoided may be monetized. This is typically done in benefits assessments;
however, it seems unnecessary for a distributional analysis, since health impact
valuation for key health effects, such as mortality, does not vary by demographic
subgroup.

A.2. Methodological Details of the Heavy Duty Diesel Distributional Analysis

The benefit analysis for the Heavy Duty Diesel (HDD) Rule was completed by Abt Associates in
2000. Therefore, the baseline and control scenario emissions, and the corresponding baseline
and control scenario ambient pollutant concentrations (in this case, PM2.5 concentrations) have
already been estimated. Abt Associates thus completed Steps 1 through 3 of a typical benefit
analysis, as described above. We had also completed Steps 4 through 6 using Criteria Air
Pollutant Modeling System (CAPMS), the precursor to BenMAP. However, Steps 4 through 6
may also be completed using the most recent version of BenMAP (version 3), which is the
approach we chose. In particular, we took the air quality modeling data that came out of the
AQM used in the benefit analysis for the HDD rule (the output from Steps 2 and 3 above) and
input them to the most recent version of BenMAP, which already has incorporated in it 304
demographic subgroups that allows for easy analysis of distributional issues.17 The inputs to the
distributional analysis of the HDD rule are described below.

A.2.1 Air Quality

To estimate air quality, we followed the same general approach used in the regulatory impact
analyses (RIAs) for the HDD rule. A key difference is that we used BenMAP, version 3.0, as
opposed to using the CAPMS benefit models used in the original HDD analysis. BenMAP 3.0
incorporates the necessary demographic variables for an environmental justice analysis that are
absent from the earlier benefits models.

EPA used the Regulatory Model System for Aerosols and Deposition (REMSAD) to model
PM2.5 levels for the HDD rule. Unlike in more recent RIAs, which combined both modeling and
monitoring data to forecast PM2.5 levels, EPA forecast PM2.5 for HDD using only modeling data.

17 The calculation of health effects at the 8 x 8 kilometer grid cell level is internal to CAPMS which reports results
only at the county level. Furthermore, CAPMS applies county-level data evenly across all grid cells in a county
which is not representative of the demographic composition of the grid cells. BenMAP’s grid cell-level data
negates the necessity to make assumptions about grid-cell level demographic composition.
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The technical support document associated with the RIA for the HDD rule describes this in detail
(Abt Associates Inc., 2000; 2003).

Table 14 presents the population-weighted PM2.5 levels for the baseline and for the difference
between baseline and the control, or “delta,” where the delta equals the baseline minus the
control. The baseline and delta PM2.5 values reported by BenMAP 3.0 compare reasonably well
with those from the RIA for the HDD rules. To the extent that there are differences, this is most
likely due to the different approaches used in BenMAP and CAPMS to forecast 2030 population.
For example, CAPMS assumes the demographic structure of the population remains constant
over time, while BenMAP takes into account a changing demographic structure, such as greater
life expectancies and a greater proportion of elderly in the future.

Table 14. Air Quality Metrics for HDD Rule

Baseline Delta
Analsyis Year Pollutant Location Metric Ver 3.0 Original Ver 3.0 Original
HDD 2030 PM2.5 U.S. Annual mean 14.65 14.85 0.64 0.65
NOTES: Units = PM2.5: micrograms per meter cubed (ug/m3).
Delta = Baseline minus control.
Source for statistics from “original” analysis: see: U.S. EPA (2000, Tables VII-2 and VII-4).

A.2.2 Population Forecast for 2030

The air quality model grid cells typically cross Census and jurisdictional boundaries, so
population data – a critical component for a distributional analysis – are not readily available for
each grid cell. A separate application developed by Abt Associates, called “PopGrid,” assigns
year 2000 Census block data to the REMSAD grid cells used in the calculation of air quality and
health impacts. As described below, BenMAP then combines the year 2000 population data at
each REMSAD grid cell with county-level population forecasts to estimate 2030 population
levels for each REMSAD grid cell.

To calculate the population in each REMSAD grid cell, PopGrid aggregates year 2000 block
data, which is the most detailed data available from the Census Bureau. Each block generally
has a few hundred individuals.18 If the center of a block falls within a grid cell, PopGrid assigns
the block’s population to that grid cell. Figure 9 in Appendix B graphically shows this
relationship.

After the aggregation, BenMAP has 304 unique race-ethnicity-gender-age groups in each
REMSAD grid cell: 19 age groups by 2 ethnic groups by gender by 4 racial groups
(19*2*2*4=304). Table 15 presents the 304 population variables available in BenMAP. As
discussed below, BenMAP uses these variables to develop the necessary population estimates for
each race-ethnicity-age subgroup.

18 Blocks and blockgroups are defined at: http://www.census.gov/geo/www/geo_defn.html. Blockgroups generally
have 600 to 3,000 individuals. Since blocks comprise blockgroups, we estimate blocks generally have a few
hundred individuals.
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Table 15. Demographic Groups and Variables Available in BenMAP

Racial/Ethnic Group Ethnicity Age Gender

White, African American,
Asian, American Indian, Other,
Hispanic

Hispanic,
Non-Hispanic

<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39,
40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79,
80-84, 85+

Male,
Female

In calculating the population in age groups that may include a portion of one of the pre-specified
demographic groups in Table 15, BenMAP assumes the population is uniformly distributed in the
age group. For example, to calculate the number of children ages 3 through 12, BenMAP
calculates:

age age age age3 12 1 4 5 9 10 14

1
2

3
5        .

To estimate population levels for the years after the last Census in 2000, BenMAP scales the
2000 Census-based estimate with the ratio of the county-level forecast for the future year of
interest over the 2000 county-level population level. Woods & Poole (2007) provides the
county-level population forecasts used to calculate the scaling ratios; these data are discussed in
detail below.

In the simplest case, where one is forecasting a single population variable, say, children ages 4 to
9, CAMPS calculates:

age age
age
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where the gth population grid-cell is wholly located within a given county. (Note that while this
example is for 2010, the same process holds for the 2030 population estimates used in our
analysis.)

In the case where the gth grid-cell includes “n” counties in its boundary, the situation is
somewhat more complicated. BenMAP first estimates the fraction of individuals in a given age
group (e.g., ages 4 to 9) that reside in the part of each county within the gth grid-cell. BenMAP
calculates this fraction by simply dividing the population all ages of a given county within the
gth grid-cell by the total population in the gth grid-cell:

fraction of age
age

ageg in county

all g in county

all g
c

c

4 9 ,

,

,

Multiplying this fraction by the number of individuals ages 4 to 9 in the year 2000 gives an
estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county within
the gth grid-cell in the year 2000:
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age age fraction ageg in county g g in countyc c4 9 2000 4 9 2000 4 9   , , , , ,

To then forecast the population in 2010, we scale the 2000 estimate with the ratio of the county
projection for 2010 to the county projection for 2000:

age age
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ageg in county g in county
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Combining all these steps for “n” counties within the gth grid-cell, we forecast the population of
persons ages 4 to 9 in the year 2010 as follows:

age age
total pop

total pop

age

ageg g

g in county

g

county

countyc

n
c c

c

4 9 2010 4 9 2000

4 9 2010

4 9 20001
 





  , , , ,

, ,

, ,

In the case where there are multiple age groups and multiple counties, BenMAP first calculates
the forecasted population level for individual age groups, and then combines the forecasted age
groups. In calculating the number of children ages 4 to 12, BenMAP calculates:
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A.2.3 Concentration-response functions

Table 16 presents the health impact functions and estimated cases of adverse health effects from
the original HDD analysis and the present analysis. The estimated numbers are not directly
comparable because different health impact functions, different incidence rates and different
population estimates are used. For the present analysis, we have used more recent functions.
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Table 16. Epidemiological Studies Used and Estimated Cases of Adverse Health Effects

Analysis Health Effect Age Current Analysis Estimated Cases
Mortality Infants Woodruff et al (1997) 34

30+ Krewski et al (2000) 8,300
Hospital Admissions

COPD 65+ Samet et al (2000) 900
Pneumonia 65+ Samet et al (2000) 1,100
Asthma 0-64 Sheppard et al (1999) 880
Cardiovascular 65+ Samet et al (2000) 2,700

Original HDD
Analysis

ER Visits, Asthma < 65 Schwartz et al (1993) 2,100
Mortality Infants Woodruff et al (2006) 100

30+ Pope et al (2002) 10,100
Hospital Admissions

COPD (less asthma) 18-64 Moolgavkar (2000) 410
COPD 65+ Moolgavkar (2003) 1,100

Ito (2003) 730
Pneumonia 65+ Ito (2003) 3,600
Asthma 0-64 Sheppard et al (2003) 1,100
Heart Attacks 18-64 Peters et al (2001) 5,700

65+ 12,100
Ischemic Heart Disease 65+ Ito (2003) 1,300
Cong. Heart Failure 65+ Ito (2003) 2,600
Dysrhythmia 65+ Ito (2003) 660
All cardiovasular 16-64 Moolgavkar (2003) 1,700

65+ Moolgavkar (2003) 4,400

Present
Analysis

ER Visits, Asthma 0-17 Norris et al (1999) 8,400

A.2.4 Baseline incidence data

Concentration-Response (C-R) functions developed from log-linear or logistic models estimate
the percent change in an adverse health effect associated with a given pollutant change. In order
to estimate the absolute change in incidence using these functions, we need the baseline
incidence of the adverse health effect. This is typically calculated as the product of the incidence
rate (per person) and the population. Below, we describe the approach we used to calculate
incidence rates for mortality, hospital admissions, and ER visits. For mortality and hospital
admissions, we calculated incidence rates varying by race and age. And in the case of ER visits,
we calculated incidence rates varying by race, ethnicity, and age.

A.2.4.1 All-cause mortality

Age, race, and county-specific mortality data were obtained from the U.S. Centers for Disease
Control (CDC) for the years 1996 through 1998. CDC maintains an online data repository of
health statistics, CDC Wonder, accessible at http://wonder.cdc.gov/. The mortality rates
provided are derived from U.S. death records and U.S. Census Bureau post-central population
estimates. Mortality rates were averaged across three years (1996 through 1998) to provide more
stable estimates.



Abt Associates Inc., November, 2008 43

When estimating rates for age groups that differed from the CDC Wonder groupings, we
assumed that rates were uniform across all ages in the reported age group. For example, to
estimate mortality rates for individuals aging between 1 and 17, we scaled the 15-19 year old
death count and population by 3/5 and then generated a population-weighted mortality rate
combining data for the younger age groups.

CDC data record three race groups: White, black and other. The mortality rates were first
calculated for these three races. Then we split the “other” race to Native American and Asian
race groups and assigned them the same mortality rates as those in the “other” race group in
order to match the input format of BenMAP.

The county-level mortality rates from the CDC Wonder website are not considered reliable if the
number of deaths is less than 20. In these cases we summarized the death counts and population
to state level and calculated the state-level mortality rates.

To obtain the predicted mortality rates in 2030, we divided the projected mortality rates from
census life tables19 by the estimated rates of 1997 to calculate the calibrated ratios. Then we
applied the calibrated ratios to adjust our estimated age, race and county-specific mortality rates
in order to get the predicted age, race and county-specific mortality rates in 2030. Table 17
presents the national mortality rates (all-cause) by age group and race.

Table 17. Mortality Rates for All-Cause Mortality, by Age Group and Race

Race
Mortality Rate by Age Group (deaths per 1000 people per year)

Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
White 6.0 0.3 0.8 1.0 1.8 3.9 9.9 24.3 56.7 153.7
Black 14.4 0.5 1.5 2.2 4.1 8.2 17.2 34.6 66.3 141.9
Other 4.9 0.3 0.6 0.7 1.2 2.5 6.2 15.3 38.3 105.8
Source: Original data were from 1996-1998 from the CDC Wonder (http://wonder.cdc.gov/) and were summarized
by age group and race. Predicted county-specific rates of 2030 are used in the C-R functions.

A.2.4.2 Hospitalization

Regional hospitalization counts were obtained from the National Center for Health Statistics’
(NCHS) National Hospital Discharge Survey (NHDS). NHDS is a sample-based survey of non-
Federal, short-stay hospitals (<30 days),20 and is the principal source of nationwide
hospitalization data. The survey collects data on patient characteristics, diagnoses, and medical
procedures.

19 Data source: http://www.census.gov/population/www/projections/natdet-D5.html
20 The following hospital types are excluded from the survey: hospitals with an average patient length of stay of
greater than 30 days, federal, military, Department of Veterans Affairs hospitals, institutional hospitals (e.g.
prisons), and hospitals with fewer than six beds.

http://wonder.cdc.gov/
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Public use data files for the year 1999 survey were downloaded and processed to estimate
hospitalization counts by region, race, age group and endpoint.21 NCHS groups states into four
regions using the following groupings defined by the U.S. Bureau of the Census:

 Northeast - Maine, New Hampshire, Vermont, Massachusetts, Rhode Island,
Connecticut, New York, New Jersey, Pennsylvania

 Midwest - Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri,
North Dakota, South Dakota, Nebraska, Kansas

 South - Delaware, Maryland, District of Columbia, Virginia, West Virginia, North
Carolina, South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama,
Mississippi, Arkansas, Louisiana, Oklahoma, Texas

 West - Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada,
Washington, Oregon, California, Alaska, Hawaii

The race categories recorded by NHDS are as follows:
1 = White
2 = Black
3 = American Indian
4 = Asian/Pacific Islander
5 = Other
9 = Not Stated

The “other” and “not stated” are nuisance categories and we assigned them to the other four race
categories based on the existing distribution of cases among the other four races. For example,
for the Northeastern region and infant age group, there are 32432 (65.9%), 14563 (29.6%), 1121
(2.3%) and 1094 (2.2%) cases of “All Respiratory Hospital Admission” for white, black,
American Indian and Asian race groups respectively. The total cases for “other” and “not stated”
are 15803, so we assign 69.5%, 29.6%, 2.3% and 2.2% of 15803 cases to white, black, American
Indian and Asian respectively.

We calculated per capita hospitalization rates, by dividing these counts by the estimated 2000
population estimates in each subgroup defined by region, age group, race and endpoint
combination that were derived from the U.S. Bureau of the Census. Note that NHDS started with
hospital admission counts, based on a sample of admissions, and then they used population
estimates to generate population-weighted hospital admission counts that are representative of
each region. This weighting used forecasts of 1999 population data. Ideally, we would use these
same forecasts to generate our admission rates. However, while NHDS presented counts of
hospital admissions with a high degree of age specificity, it presented regional population data
for only four age groups: 0-14, 15-44, 45-64, and 65+.4 Using only the NHDS data, we would be
limited to calculating regional admission rates for four groups. Because we are interested in a
broader range of age groups, we turned to the 2000 Census5.

21 Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHDS/
4 See: 1999nhds_summary.pdf (p. 187) for published regional population estimates for 1999.

5 We realized that using the 2000 population and 1999 hospitalization counts could underestimate the rates a little bit
given the consideration of population growth.
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The endpoints in hospitalization studies are defined using different combinations of ICD codes.
For the purposes of this analysis, we identified a core group of endpoints and calculated their
incidence rate for use in the C-R functions:

 1= Acute Myocardial Infarction, Nonfatal (ICD-9 410)
 2= HA, All Cardiovascular less Myocardial Infarctions (ICD-9 390-409, 411-459)
 3= HA, All Respiratory (ICD-9 460-519)
 4= HA, Asthma (ICD-9 493)
 5= HA, Chronic Lung Disease (ICD-9 490-496)
 6= HA, Chronic Lung Disease less Asthma (ICD-9 490-492, 494-496)
 7= HA, Congestive Heart Failure (ICD-9 428)
 8= HA, Dysrhythmia (ICD-9 427)
 9= HA, Ischemic Heart Disease less Myocardial Infarctions (ICD-9 411-414)
 10= HA, Pneumonia (ICD-9 480-487)

For each C-R function obtained from the epidemiologic studies, we selected the baseline rate or
combination of rates that most closely matches to the study endpoint definition. For studies that
define chronic lung disease as ICD 490-492, 494-496, we subtracted the incidence for asthma
(ICD 493) from the chronic lung disease (ICD 490-496). In some cases, the baseline rate will
not match exactly to the endpoint definition in the study. For example, Burnett et al. (2001)
studied the following respiratory conditions in infants <2 years of age: ICD 464.4, 466, 480-486,
493. For this C-R function we apply an aggregate of the following rates: ICD 464, 466, 480-487,
493. Although they do not match exactly, we assume that relationship observed between the
pollutant and study-defined endpoint is applicable for the additional codes. Table 18 presents the
hospitalization rates estimates by endpoint, race and age group.
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Table 18. Hospitalization Rates by Endpoint, Race and Age Group

Hospitalization Rate by Age Group (deaths per 1000 people per day)
Endpoint* Race

0-1 2-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
1 ASIAN 0.0000 0.0000 0.0000 0.0000 0.0022 0.0028 0.0123 0.0211 0.0529 0.0016
1 BLACK 0.0000 0.0000 0.0001 0.0002 0.0019 0.0067 0.0192 0.0236 0.0421 0.0609
1 NATA 0.0000 0.0000 0.0000 0.0000 0.0034 0.0021 0.0088 0.0451 0.0923 0.0438
1 WHITE 0.0000 0.0000 0.0000 0.0004 0.0026 0.0090 0.0182 0.0315 0.0469 0.0625
2 ASIAN 0.0000 0.0000 0.0000 0.0020 0.0050 0.0220 0.0526 0.0989 0.2113 0.4385
2 BLACK 0.0029 0.0007 0.0011 0.0100 0.0286 0.0677 0.1130 0.2089 0.2419 0.2981
2 NATA 0.0000 0.0002 0.0001 0.0049 0.0136 0.0247 0.1072 0.2486 0.4456 0.4288
2 WHITE 0.0025 0.0006 0.0015 0.0027 0.0101 0.0306 0.0720 0.1464 0.2285 0.3012
3 ASIAN 0.1027 0.0098 0.0047 0.0026 0.0053 0.0092 0.0212 0.0747 0.1536 0.2903
3 BLACK 0.2230 0.0279 0.0134 0.0158 0.0241 0.0436 0.0652 0.1030 0.1839 0.3279
3 NATA 0.1272 0.0122 0.0022 0.0106 0.0090 0.0090 0.0320 0.0924 0.2957 0.6510
3 WHITE 0.1384 0.0127 0.0065 0.0079 0.0109 0.0187 0.0440 0.0965 0.1718 0.2612
4 ASIAN 0.0102 0.0051 0.0003 0.0004 0.0018 0.0013 0.0037 0.0043 0.0099 0.0568
4 BLACK 0.0430 0.0174 0.0038 0.0066 0.0079 0.0099 0.0139 0.0119 0.0213 0.0054
4 NATA 0.0156 0.0073 0.0000 0.0024 0.0020 0.0000 0.0017 0.0014 0.0082 0.0000
4 WHITE 0.0161 0.0040 0.0020 0.0025 0.0020 0.0033 0.0034 0.0043 0.0050 0.0065
5 ASIAN 0.0102 0.0051 0.0003 0.0006 0.0022 0.0018 0.0071 0.0193 0.0320 0.0744
5 BLACK 0.0458 0.0175 0.0043 0.0067 0.0086 0.0170 0.0307 0.0449 0.0680 0.0665
5 NATA 0.0156 0.0073 0.0000 0.0023 0.0020 0.0024 0.0035 0.0179 0.0296 0.0919
5 WHITE 0.0169 0.0042 0.0022 0.0030 0.0035 0.0075 0.0190 0.0380 0.0517 0.0406
6 ASIAN 0.0000 0.0000 0.0000 0.0001 0.0004 0.0006 0.0037 0.0149 0.0215 0.0419
6 BLACK 0.0029 0.0000 0.0004 0.0000 0.0011 0.0070 0.0173 0.0333 0.0466 0.0603
6 NATA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0023 0.0022 0.0166 0.0203 0.0870
6 WHITE 0.0008 0.0002 0.0002 0.0005 0.0015 0.0042 0.0155 0.0336 0.0467 0.0339
7 ASIAN 0.0000 0.0000 0.0000 0.0003 0.0001 0.0026 0.0061 0.0167 0.0630 0.2230
7 BLACK 0.0001 0.0001 0.0000 0.0015 0.0055 0.0168 0.0344 0.0653 0.0711 0.1306
7 NATA 0.0000 0.0000 0.0000 0.0026 0.0030 0.0020 0.0090 0.0596 0.0483 0.2531
7 WHITE 0.0005 0.0000 0.0002 0.0001 0.0009 0.0029 0.0108 0.0309 0.0743 0.1357
8 ASIAN 0.0000 0.0000 0.0000 0.0011 0.0002 0.0014 0.0049 0.0166 0.0284 0.0972
8 BLACK 0.0003 0.0002 0.0005 0.0016 0.0024 0.0057 0.0122 0.0226 0.0363 0.0405
8 NATA 0.0000 0.0003 0.0002 0.0001 0.0011 0.0032 0.0056 0.0316 0.1201 0.0346
8 WHITE 0.0004 0.0003 0.0005 0.0006 0.0021 0.0043 0.0110 0.0287 0.0481 0.0621
9 ASIAN 0.0000 0.0000 0.0000 0.0000 0.0001 0.0116 0.0290 0.0452 0.0852 0.0550
9 BLACK 0.0000 0.0000 0.0000 0.0003 0.0047 0.0171 0.0325 0.0537 0.0613 0.0337
9 NATA 0.0000 0.0000 0.0000 0.0004 0.0014 0.0138 0.0769 0.1362 0.1687 0.1212
9 WHITE 0.0008 0.0000 0.0002 0.0006 0.0040 0.0166 0.0386 0.0622 0.0688 0.0532

10 ASIAN 0.0303 0.0039 0.0005 0.0016 0.0019 0.0046 0.0137 0.0403 0.0684 0.1277
10 BLACK 0.0678 0.0058 0.0047 0.0055 0.0082 0.0155 0.0234 0.0318 0.0723 0.1427
10 NATA 0.0441 0.0039 0.0010 0.0092 0.0064 0.0012 0.0010 0.0441 0.1828 0.4879
10 WHITE 0.0366 0.0044 0.0015 0.0024 0.0038 0.0061 0.0149 0.0374 0.0767 0.1545

Source: As described in the text, we obtained the regional count of hospital admissions from National
Hospital Discharge Survey (NHDS), and we obtained the population data from the 2000 U.S. Census. *
Endpoints described on the previous page.
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A.2.4.3 Emergency room visits for asthma

Regional asthma emergency room (ER) visit counts were obtained from the National Hospital
Ambulatory Medical Care Survey (NHAMCS). NHAMCS is a sample-based survey, conducted
by NCHS, designed to collect national data on ambulatory care utilization in hospital emergency
and outpatient departments of non-Federal, short-stay hospitals (<30 days).5

Public use data files for the year 2000 survey were downloaded6 and processed to estimate ER
visit counts by region, age group, race and ethnicity. There are five race categories from
NHAMCS as shown below. We grouped 3, 4, and 5 to be “Other” race group given the lack of
data for American Indians.

1 = White
2 = Black
3 = Asian or Native Hawaiian/Other Pacific Islander
4 = American Indian/Alaska Native
5 = More than one race reported

NHAMCS also records ethnicity information that divides people into three ethnic groups:
Hispanic, non-Hispanic and blank ethnicity. Blank category is the nuisance one and we assigned
the Blank cases to Hispanic and non-Hispanic using the relative proportions of cases already
assigned to Hispanics and non-Hispanics. For example, for Northeastern Region, age group 0-17
and black race, there are 8733 cases (32.9%) for Hispanics and 17813 cases (67.1%) for non-
Hispanics, so we would take the 3285 cases in the Blank group and assign 32.9% to Hispanics
and 67.1% to non-Hispanics. For cases where blank is the only ethnic group, we use the ratio of
Hispanic and non-Hispanic in the corresponding age group to assign the counts in the blank
category.

After obtaining the ER visit counts in each region, age group, race and ethnicity combination, we
divided these counts by the corresponding population estimates from the 2000 U.S. Census to
calculate the ER incidence rates. Table 19 presents the estimated asthma emergency room rates
by region.

5 The target universe of the NHAMCS is in-person visits made in the United States to emergency and outpatient
departments of non-Federal, short-stay hospitals (hospitals with an average stay of less than 30 days) or those whose
specialty is general (medical or surgical) or children’s general.

6 Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHAMCS/
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Table 19. Emergency Room Visit Rates for Asthma, by Region, Race, Ethnicity and Age Group

ER Visit Rate by Age Group (deaths per 1000 people per day)
Region Race Ethnicity

0-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+
MidW ASIAN HISPANIC 0 0 0 0 0 0 0 0 0
MidW ASIAN NON-

HISPANIC
0 0 0 0 0 0 0 0 0

MidW BLACK HISPANIC 0 0 0 0 0 0 0 0 0
MidW BLACK NON-

HISPANIC
0.0987 0.0665 0.0849 0.0213 0 0.0079 0.0923 0 0

MidW NATAMER HISPANIC 0 0 0 0 0 0 0 0 0
MidW NATAMER NON-

HISPANIC
0 0 0 0 0 0 0 0 0

MidW WHITE HISPANIC 0.0448 0 0 0.0674 0.2112 0 0 0 0
MidW WHITE NON-

HISPANIC
0.032 0.0525 0.0281 0.0197 0.0103 0.0052 0 0.017 0

NE ASIAN HISPANIC 0.0343 0 0 0 0 0 0 0 0
NE ASIAN NON-

HISPANIC
0 0 0.0174 0.0246 0 0 0.3058 0 0

NE BLACK HISPANIC 0.1822 0 0 0 0.008 0.7873 0 0 0
NE BLACK NON-

HISPANIC
0.0303 0.1157 0.0494 0.0592 0.003 0 0.0408 0.0795 0

NE NATAMER HISPANIC 0.0343 0 0 0 0 0 0 0 0
NE NATAMER NON-

HISPANIC
0 0 0.0174 0.0246 0 0 0.3058 0 0

NE WHITE HISPANIC 0.0304 0.0444 0.0447 0.0228 0.0195 0.0532 0 0 0
NE WHITE NON-

HISPANIC
0.016 0.0355 0.0188 0.0152 0.0099 0.0112 0 0.0027 0

South ASIAN HISPANIC 0 0 0 0 0 0 0 0 0
South ASIAN NON-

HISPANIC
0 0 0 0 0 0 0 0 0

South BLACK HISPANIC 0.2121 0 0 0 0 0 0.1239 0 0
South BLACK NON-

HISPANIC
0.0577 0.0083 0.0175 0.018 0.0176 0.0325 0.0065 0 0

South NATAMER HISPANIC 0 0 0 0 0 0 0 0 0
South NATAMER NON-

HISPANIC
0 0 0 0 0 0 0 0 0

South WHITE HISPANIC 0.0453 0 0 0.0027 0 0 0.0221 0 0
South WHITE NON-

HISPANIC
0.0221 0.0234 0.0195 0.0026 0.0083 0.0138 0.007 0.0034 0

West ASIAN HISPANIC 0.0343 0 0 0 0 0 0 0 0
West ASIAN NON-

HISPANIC
0.0142 0 0.0076 0 0.0109 0.0048 0.0035 0 0

West BLACK HISPANIC 0 0 0 0.0024 0 0 0 0 0
West BLACK NON-

HISPANIC
0.0108 0 0.1036 0.0026 0.0384 0.0436 0 0 0

West NATAMER HISPANIC 0.0343 0 0 0 0 0 0 0 0
West NATAMER NON-

HISPANIC
0.0142 0 0.0076 0 0.0109 0.0048 0.0035 0 0

West WHITE HISPANIC 0.0136 0.0133 0.0027 0 0.0157 0 0 0 0
West WHITE NON-

HISPANIC
0.0081 0.0326 0.013 0.0089 0.0016 0.0094 0.0026 0.0091 0

Source: We obtained ER visit counts for the year 2000 from the National Hospital Ambulatory Medical Care Survey (NHAMCS)
and population data were obtained from the 2000 U.S. Census.
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Appendix A.3: Definitions and Properties of Inequality Measures

Table 20. Definitions of Inequality Measures (Reprint from Cowell (2005), p. 137)
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Table 21. Properties of Inequality Measures (Reprint from Cowell (2005), pp. 66-67)
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Appendix B. Relationship between Grid Cell and Census Blocks

The red rectangle and those ellipses represent the grid cell and Census blocks respectively. In
this case, the two blocks segmented by blue lines will be excluded when BenMAP calculates the
population in this grid cell.

Figure 9. Grid Cell and Census Blocks
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